Домой / Обзор Linux / Беспроводные ad hoc сети. Введение в сети AdHoc Тип беспроводной сети ad hoc

Беспроводные ad hoc сети. Введение в сети AdHoc Тип беспроводной сети ad hoc

Специальная сеть, или независимая базовая зона обслуживания (IBSS), возникает, когда отдельные устройства–клиенты формируют самоподдерживающуюся сеть без использования отдельной точки доступа (AP – Access Point). При создании таких сетей не разрабатывают какие–либо карты места их развертывания и предварительные планы, поэтому они обычно невелики и имеют ограниченную протяженность, достаточную для передачи совместно используемых данных при возникновении такой необходимости.

Поскольку в IBSS отсутствует точка доступа, распределение времени (timing) осуществляется нецентрализованно. Клиент, начинающий передачу в IBSS, задает сигнальный (маячковый) интервал (beacon interval) для создания набора моментов времени передачи маячкового сигнала (set of target beacon transmission time, TBTT). Когда завершается ТВТТ, каждый клиент IBSS выполняет следующее:

Приостанавливает все несработавшие таймеры задержки (backoff timer) из предыдущего ТВТТ;

Определяет новую случайную задержку;

Базовые зоны обслуживания (BSS)

BSS – это группа работающих по стандарту 802.11 станций, связывающихся одна с другой. Технология BSS предполагает наличие особой станции, которая называется точка доступа AP (Access Point). Точка доступа – это центральный пункт связи для всех станций BSS. Клиентские станции не связываются непосредственно одна с другой. Вместо этого они связываются с точкой доступа, а уже она направляет кадры к станции–адресату. Точка доступа может иметь порт восходящего канала (uplink port), через который BSS подключается к проводной сети (например, восходящий канал Ethernet). Поэтому BSS иногда называют инфраструктурой BSS. На рисунке 4 представлена типичная инфраструктура BSS.

  1. Инфраструктура локальной беспроводной сети bss

Расширенные зоны обслуживания (ESS)

Несколько инфраструктур BSS могут быть соединены через их интерфейсы восходящего канала. Там, где действует стандарт 802.11, интерфейс восходящего канала соединяет BBS с распределительной системой (Distribution System, DS). Несколько BBS, соединённых между собой через распределительную систему, образуют расширенную зону обслуживания (ESS). Восходящий канал к распределительной системе не обязательно должен использовать проводное соединение. На рисунке 5 представлен пример практического воплощения ESS. Спецификация стандарта 802.11 оставляет возможность реализации этого канала в виде беспроводного. Но чаще восходящие каналы к распределительной системе представляют собой каналы проводной технологии Ethernet.

Инфраструктурное соединение

Данная модель используется когда необходимо соединить больше двух компьютеров. Сервер с точкой доступа может выполнять роль роутера и самостоятельно распределять интернет–канал.

Точка доступа, с использованием роутера и модема

Точка доступа включается в роутер, роутер – в модем (эти устройства могут быть объединены в два или даже в одно). Теперь на каждом компьютере в зоне действия Wi–Fi , в котором есть адаптер Wi–Fi, будет работать интернет.

  1. Расширенная зона обслуживания ess беспроводной сети

Клиентская точка

В этом режиме точка доступа работает как клиент и может соединятся с точкой доступа работающей в инфраструктурном режиме. Но к ней можно подключить только один МАС–адрес. Здесь задача состоит в том, чтобы объединить только два компьютера. Два Wi–Fi–адаптера могут работать друг с другом напрямую без центральных антенн.

Соединение мост

Компьютеры объединены в проводную сеть. К каждой группе сетей подключены точки доступа, которые соединяются друг с другом по радио каналу. Этот режим предназначен для объединения двух и более проводных сетей. Подключение беспроводных клиентов к точке доступа, работающей в режиме моста невозможно.

Оборудование, предназначенное для работы в стандарте 802.11, в основном делится на два класса – это клиенты и точки доступа (Access Point). Роль клиентов могут играть настольные компьютеры, ноутбуки, КПК, телефоны, принтеры, игровые приставки и прочая портативная и стационарная бытовая техника, оборудованная Wi–Fi–модулем. Если в ПК или КПК изначально отсутствует поддержка беспроводных сетей, то в большинстве случаев это можно с легкостью восполнить приобретением соответствующего адаптера, который может быть реализован в форме практически любой платы расширения. Точки доступа обычно выполнены в виде отдельного внешнего устройства, подключаемого непосредственно к кабелю проводной сети Ethernet или к любому другому совместимому источнику широкополосного доступа в Интернет. Иногда точки доступа комбинируют с каким–либо другим устройством, например, весьма распространены ADSL–модемы, совмещенные с точкой доступа Wi–Fi. На точку доступа возлагается львиная часть работы по обслуживанию беспроводной сети: она должна не только поддерживать радиопередачу со всеми клиентами и связывать сеть с внешним миром, но и регулировать трафик, обрабатывать данные и совершать массу других операций. Также в некоторых случаях может потребоваться и дополнительное оборудование: например, при недостаточном уровне сигнала нужны антенны, а при необходимости соединения между собой двух сетей – мосты.

Оборудование

Для построения беспроводной ЛВС необходимо оборудование следующих типов:

    Точки доступа (Access Point, AP), используются для подключения пользователей к ЛВС по радиоканалу;

    Беспроводные мосты (Wireless Brigde), используются для объединения двух и более ЛВС по радиоканалу;

    Внешние антенны, используются для усиления радиосигнала и/или для изменения направления распространения сигнала;

    Сетевые радио–карты для клиентов (Wireless Netcard), используются для подключения компьютера клиента к АР;

    Контроллеры беспроводной сети (Wireless LAN Controllers), используются для централизованного управления всей беспроводной сетью предприятия.

Точки доступа подразделяются на автономные (Autonomous) и упрощенные (Lightweight).

Отличие упрощенных точек доступа заключается в необходимости использования контроллера беспроводной сети. В этом случае весь интеллект сосредотачивается в контроллере, а точка доступа выступает только в роли радиоприемника/передатчика. Контроллер обеспечивает:

    Автоматическое получение точками доступа текущей конфигурации;

    Автоматический выбор канала и мощности каждого передатчика для обеспечения оптимальной зоны покрытия и предотвращения помех, вызванных перекрытием зон покрытия передатчиков с одинаковым радиоканалом;

    Централизованное применение политик безопасности и качества обслуживания (QoS);

    Обеспечение роуминга мобильных пользователей.

Применять упрощенные точки доступа целесообразно в сетях с большим количеством точек доступа и зоной охвата сложной геометрической формы.

Автономные точки доступа обычно применяются в случаях, когда их число невелико, например для организации радиоканала между зданиями или для беспроводных сетей с небольшой зоной покрытия, для обеспечения которой достаточно 1–2 точек.

801.11 - стандарт IEEE, в котором определяется порядок доступа к передающей среде и приводятся спецификации физического уровня для беспроводных локальных сетей со скоростью до 2 Мбит/с. Стандарт 802.11 распространяется на высокочастотные радиоканалы DSSS и FHSS, а также на инфракрасные каналы.
802.11а - редакция стандарта 802.11 IEEE, в которой рассматриваются сети, работающие со скоростями до 54 Мбит/с по технологии DSSS.
802.11b - редакция стандарта 802.11 IEEE, в которой рассматриваются сети, работающие со скоростями до 11 Мбит/с по технологии DSSS.
802.1lg - редакция стандарта 802.11 IEEE, в которой рассматриваются сети, работающие со скоростями до 54 Мбит/с по технологии DSSS, обратно совместимые со стандартом 802.11b.
802.1li - стандарт IEEE, относящийся к безопасности беспроводных сетей. В нем объединены протоколы 802.1х и TKIP/CCMP с целью обеспечить аутентификацию пользователей, конфиденциальность и целостность данных в беспроводных локальных сетях.
802.1х - стандарт IEEE аутентификации и контроля доступа на канальном уровне. Access point (точка доступа) - тип базовой станции, которую беспроводная локальная сеть использует для обеспечения взаимодействия беспроводных пользователей с проводной сетью и осуществления роуминга в пределах здания.

РЕЖИМ AD HOC

(режим одноранговой сети) - конфигурация беспроводной сети , при которой пользователи могут непосредственно устанавливать соединения между своими устройствами, обходясь без услуг базовой станции. В этом режиме могут работать беспроводные персональные и локальные сети.

Основное достоинство данного режима – простота организации: он не требует дополнительного оборудования (точки доступа). Режим может применяться для создания временных сетей для передачи данных. Однако необходимо иметь в виду, что режим Ad Hoc позволяет устанавливать соединение на скорости не более 11 Мбит/с, независимо от используемого оборудования. Реальная скорость обмена данных будет ниже, и составит не более 11/N Мбит/с, где N – число устройств в сети. Дальность связи составляет не более ста метров, а скорость передачи данных быстро падает с увеличением расстояния. Для организации долговременных беспроводных сетей следует использовать инфраструктурный режим.
Пример:
На клиентской стороне будем использовать беспроводный USB-адаптер. Все настройки для других типов адаптеров (PCI, PCMCI, ExpressCard и т.д.) проводятся аналогичным образом.
При подключении адаптера необходимо установить драйвер, который идёт в комплекте со всем беспроводным оборудованием. В окне Сетевые подключения должен появиться значок Беспроводное сетевое соединения

Беспроводную сеть в режиме Ad Hoc сначала будем строить из компьютера1 и ноутбука1, а затем можно будет подключить и остальные компьютеры. Это можно сделать двумя способами: с помощью встроенной службы Windows XP или Windows Vista и программой D-Link AirPlus XtremeG Wireless Utility, которая идёт в комплекте с оборудованием D-Link.
1) Настройка подключения с помощью встроенной службы Windows. При установке интерфейса, при помощи встроенной утилиты Windows, дополнительные программы не требуются. Но для этого требуется установить галочку Использовать Windows для настройки сети на вкладке Беспроводные сети в свойствах беспроводного соединения

Перед установкой соединения необходимо настроить статические IP-адреса. Они настраиваются в свойствах беспроводного соединения, на вкладке Общие, в свойствах Протокол Интернета (TCP/IP)

Первый компьютер (Компьютер1) пусть будет иметь IP-адрес: 192.168.0.1, а второй (Ноутбук1): 192.168.0.2, а маска подсети: 255.255.255.0. Теперь для организации сети в режиме Ad Hoc , двойным щелчком левой кнопки мыши по беспроводному интерфейсу запустим службу Windows. Здесь, на одном из компьютеров, запустим Установить беспроводную сеть. В появившемся мастере надо ввести SSID (например, AdHocNet) и ввести ключ доступа. На этом конфигурирование одного компьютера заканчивается.

На другом компьютере тоже запускаем службу Windows, и в основном окне выбираем появившуюся сеть (AdHocNet). При совпадении ключей доступа этот компьютер подключается к первому и таким образом, создаётся беспроводная сеть Ad Hoc.
Если нужно подключить ещё компьютеры, то проводятся все те же действия, что и со вторым. В этом случае сеть уже будет состоять из нескольких компьютеров.
2) Настройка подключения с помощью программы D-Link AirPlus XtremeG Wireless Utility.
В этом случае надо установить эту программу и убрать галочку Использовать Windows для настройки сети.
Чтобы организовать беспроводную связь Ad Hoc запустите эту программу на первом компьютере и перейдите на вкладку Настройка.

Затем введите SSID создаваемой сети (например, AdHocNet), выберете режим Ad Hoc и установите IP-адрес с маской беспроводного интерфейса.
Аутентификацию и шифрование пока оставим открытыми. Если нужно сделать дополнительные настройки, то их можно произвести на вкладке Расширенные настройки.
На других компьютерах также запускаем эту программу и открываем вкладку Обзор сетей:

В появившемся окне выбрать сеть, и для настройки IP-адреса второго компьютера нажать кнопку Конфигурация. Затем нажать кнопку Подключить, и при совпадении ключей доступа беспроводный адаптер подключится к первому компьютеру. Остальные компьютеры подключаются аналогичным образом. Обновление доступных сетей производится кнопкой Обновить.

Инфраструктурный режим

В этом режиме точки доступа обеспечивают связь клиентских компьютеров. Точку доступа можно рассматривать как беспроводный коммутатор. Клиентские станции не связываются непосредственно одна с другой, а связываются с точкой доступа, и она уже направляет пакеты адресатам.

Точка доступа имеет порт Ethernet, через который базовая зона обслуживания подключается к проводной или смешанной сети – к сетевой инфраструктуре. Пример:
Настроим беспроводную точку доступа в инфраструктурном режиме. Настройка производиться через проводной интерфейс, т.е. используя Ethernet-соединение. Хотя можно это делать и через беспроводный интерфейс, но мы не рекомендуем, т.к. при достаточно большом количестве точек доступа может возникнуть путаница в настройках.
1. В окне Сетевые подключения отключите сетевые и бессетевые адаптеры. В контекстном меню выбрать «Отключить» для каждого адаптера. В результате все компьютеры изолированы друг от друга, сетевых подключений нет.
2. Настраиваем сетевые адаптеры для связи с точкой доступа. Подключения по локальной сети->Свойства->Протокол TCP/IP->Свойства -Использовать следующий IP-адрес
-Укажите адрес 192.168.0.ххх, где ххх – номер вашего компьютера (1, 2, 3 и т.д).
-Укажите маску 255.255.255.0
-Включите кабельное соединение
3.Подключаемся к точке доступа.
Соединяем точку доступа сетевым кабелем с сетевым адаптером, подаем питание.
Сбрасываем настройки точки. Для этого в течение пяти секунд нажимаем и держим кнопку reset. Не отключайте питание при нажатой reset! Время загрузки точки – около 20 секунд.
По окончании загрузки на точке загораются индикаторы Power и LAN. В браузере Internet Explorer наберите http://192.168.0.50 , Появится приглашение на ввод имени и пароля.

4.Начинаем настройку. Введите в качестве имени пользователя «admin» с пустым паролем. Настроим сначала IP-адрес точки. Это нужно лишь в том случае, когда у вас много точек доступа. На вкладке Home жмем кнопку Lan (слева).
-Выставляем адрес 192.168.0.xxх, где xxх – уникальный номер точки.
-Маска 255.255.255.0
-Default Gateway 192.168.0.50
5. Включение режима точки доступа.
Дождитесь загрузки точки, и введите в браузере новый адрес http://192.168.0.xxx
На вкладке Home нажмите кнопку Wireless (слева)
Устанавливаем:
Mode (режим): Access Point
SSID: Network
SSID Broadcast: Enable
Channel: 6
Authentication: Open System
Encryption: Disable

Заметьте, что выбранные нами установки не обеспечивают безопасность беспроводного подключения, и используются только с целью обучения. Если нужно сделать более тонкие настройки, перейдите на вкладку Advanced. Настоятельно рекомендуем перед настройкой вашей точки доступа прочитать документацию по настройке, краткое описание всех параметров есть на вкладке Help.
По завершении настройки нажать «Apply», чтобы перезагрузить точку с новыми настройками.
Отключите точку от сетевого интерфейса. Теперь ваша точка настроена на подключение беспроводных клиентов. В простейшем случае, чтобы предоставить клиентам Интернет, нужно к точке подключить широкополосный канал или ADSL-модем. Клиентские компьютеры подключаются аналогичным образом, как это было описано в предыдущем примере.

Режимы wds и wds with ap

Термин WDS (Wireless Distribution System) расшифровывается как «распределённая беспроводная система». В этом режиме точки доступа соединяются только между собой, образуя мостовое соединение. При этом каждая точка может соединяться с несколькими другими точками. Все точки в этом режиме должны использовать одинаковый канал, поэтому количество точек, участвующих в образовании моста, не должно быть чрезмерно большим. Подключение клиентов осуществляется только по проводной сети через uplink- порты точек.

Режим беспроводного моста, аналогично проводным мостам, служит для объединения подсетей в общую сеть. С помощью беспроводных мостов можно объединять проводные LAN, находящиеся как на небольшом расстоянии в соседних зданиях, так и на расстояниях до нескольких километров. Это позволяет объединить в сеть филиалы и центральный офис, а также подключать клиентов к сети провайдера Интернет.

Беспроводный мост может использоваться там, где прокладка кабеля между зданиями нежелательна или невозможна. Данное решение позволяет достичь значительной экономии средств и обеспечивает простоту настройки и гибкость конфигурации при перемещении офисов.
К точке доступа, работающей в режиме моста, подключение беспроводных клиентов невозможно. Беспроводная связь осуществляется только между парой точек, реализующих мост.
Термин WDS with AP (WDS with Access Point) обозначает «распределённая беспроводная система, включая точку доступа», т.е. с помощью этого режима можно организовать не только мостовую связь между точками доступа, но и одновременно подключить клиентские компьютеры. Это позволяет достичь существенной экономии оборудования и упростить топологию сети. Данная технология поддерживается большинством современных точек доступа.

Тем не менее, необходимо помнить, что все устройства в составе одной WDS with AP работают на одной частоте и создают взаимные помехи, что ограничивает количество клиентов до 15-20 узлов. Для увеличения количества подключаемых клиентов можно использовать несколько WDS-сетей, настроенных на разные неперекрывающиеся каналы и соединенные проводами через uplink-порты.
Топология организации беспроводных сетей в режиме WDS аналогична обычным проводным топологиям. Топология типа «шина»
Топология типа «шины» самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов.
Здесь отсутствует центральный абонент, через которого передается вся информация, что увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину довольно просто. Надо ввести параметры новой точки доступа в последнюю, что приведёт только кратковременную перезарузку последней точки. Шине не страшны отказы отдельных точек, так как все остальные компьютеры сети могут нормально продолжать обмен между собой, но при этом оставшаяся часть компьютеров не смогут получить доступ в Интернет. Топология типа «кольцо»
«Кольцо» - это топология, в которой каждая точка доступа соединена только с двумя другими. Четко выделенного центра в данном случае нет, все точки могут быть одинаковыми.
Подключение новых абонентов в «кольцо» обычно совершенно безболезненно, хотя и требует обязательной остановки работы двух крайних точек от новой точки доступа.
В то же время основное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров). Кольцо в этом отношении существенно превосходит любые другие топологии.
Топология связей между точками в этом режиме представляет собой ациклический граф типа дерево, то есть данные из Интернета от точки 4 к точке 2 может проходят по двум направлениям – через точку 1 и 3. Для устранения лишних связей, способных приводить к появлению циклов в графе, реализуется алгоритм Spanning tree. Его работа приводит к выявлению и блокированию лишних связей. При изменении топологии сети, например – из-за отключения некоторых точек или невозможности работы каналов – алгоритм Spanning tree запускается заново, и прежде заблокированные лишние связи могут использоваться взамен вышедших из строя. Топология типа «звезда» «Звезда» – это топология с явно выделенным центром, к которому подключаются все остальные абоненты. Весь обмен информацией идет исключительно через центральную точку доступа, на которую таким образом ложится очень большая нагрузка.
Если говорить об устойчивости звезды к отказам точек, то выход из строя обычной точки доступа никак не отражается на функционировании оставшейся части сети, зато любой отказ центральной точки делает сеть полностью неработоспособной. Серьезный недостаток топологии «звезда» состоит в жестком ограничении количества абонентов. Так как все точки работают на одном канале, то обычно центральный абонент может обслуживать не более 10 периферийных абонентов из-за большого падения скорости.
В большинстве случаев, например для объединения нескольких районов в городе, используют комбинированные топологии.

Режим повторителя

Может возникнуть ситуация, когда оказывается невозможно, или неудобно, соединить точку доступа с проводной инфраструктурой, или какое-либо препятствие затруднит осуществление связи точки доступа с местом расположения беспроводных станций клиентов напрямую. В такой ситуации можно использовать точку в режиме повторителя (Repeater).

Аналогично проводному повторителю, беспроводный повторитель просто ретранслирует все пакеты, поступившие на его беспроводный интерфейс. Эта ретрансляция осуществляется через тот же канал, через который они были получены. При применении точки доступа-повторителя следует помнить, что наложение широковещательных доменов может привести к сокращению пропускной способности канала вдвое, потому что начальная точка доступа также «слышит» ретранслированный сигнал.
Режим повторителя не включен в стандарт 802.11, поэтому для его реализации рекомендуется использовать однотипное оборудование (вплоть до версии прошивки) и от одного производителя. С появлением WDS данный режим потерял свою актуальность, потому что функционал WDS заменяет его. Однако его можно встретить в старых версиях прошивок и в устаревшем оборудовании.

Режим клиента

При переходе от проводной архитектуры к беспроводной иногда можно обнаружить, что имеющиеся сетевые устройства поддерживают проводную сеть Ethernet, но не имеют интерфейсных разъемов для беспроводных сетевых адаптеров. Для подключения таких устройств к беспроводной сети можно использовать точку доступа – клиент

При помощи точки доступа-клиента к беспроводной сети подключается только одно устройство. Этот режим не включен в стандарт 802.11, и поддерживаются не всеми производителями.

Изначально писалось для Шефа, который хотел подключиться к Интернету через ноут моей коллеги, Тани. Поэтому в статье имена собственные оставляю.

На главном компьютере (Танином) надо создать ad-hoc сеть, а потом установить так называемое общее подключение к Интернету (Internet Connection Sharing).

Шаг 1

Щелкаем по значку левой клавишей мыши 2 раза и попадаем в окно доступных беспроводных сетей.

Шаг 2

Обратите внимание, могут обнаружиться другие сети. Защищенные имеют значок замочка. Есть и открытые.

Т.е. при подключении к ним не требуется ни паролей, ни ключей. Мы же свою сеть сделаем защищенной.

Нажимаем пункт «Изменить дополнительные параметры».

Шаг 3

В открывшемся окне, выделяем «Протокол Интернета TCP/IP» и нажимаем кнопку свойства.

Шаг 4

Проверяем, выставлены ли «IP-адрес» и «Маска подсети».
По умолчанию, IP адрес стоит 192.168.0.1, а маска подсети 255.255.255.0 – так что менять ничего не будем.
Нажимаем «ОК»

Этот шаг делать в принципе не обязательно. Если не прописывать IP-адрес, то будет использоваться служба автоматической адресации APIPA.

Однако, после прохождения шагов 9-21 адрес будет заменен мастером на тот, что на рисунке.

Шаг 5

В этом окне отмечаем, галочкой «Использовать Windows для настройки»,

а чуть ниже нажимаем кнопку «Добавить».

Шаг 6

Вводим следующие параметры:

  • Сетевое имя (SSID) – название нашей сети.
  • Проверка подлинности – выбираем совместная
  • Шифрование данных – WEP
  • Ключ предоставлен автоматически – галочку снять, иначе не получится задать свой ключ.
  • Ключ сети – необходимо ввести достаточно длинный ключ, состоящий из букв и цифр.
  • Подтверждение – повторяем ключ.
  • Отмечаем галочкой пункт «Это прямое соединение компьютер-компьютер, точки доступа не используются».

Переходим во вкладку «Подключение».

Шаг 7

Отмечаем галочкой «Подключаться, если сеть находится в радиусе действия».

Нажимаем «Ок».

Шаг 8

Снова щелкаем в трее по иконке беспроводного соединения и видим, что в списке доступных сетей появилось наше соединение.

Теперь, можно сказать, что сеть готова, только на данный момент, толку от нее будет мало, потому что нашей целью является доступ
в Интернет с помощью Вашего ноутбука. Для этого, в этом же окне снова нажимаем «Изменить дополнительные параметры».

Шаг 9

В открывшемся окне переходим в закладку «Дополнительно». Выбираем пункт «Мастер домашней сети».

Шаг 12

Отмечаем галочкой «Игнорировать отключенное сетевое оборудование».
Оно отключено, так как мы к нему еще не подключили наш ноутбук. Жмем далее.

Шаг 13

Здесь выберите тот параметр, что подходит вам.
В вашем случае это 2-й пункт – через шлюз.

Шаг 14

Мастер настройки предлагает выбрать подсоединение к Интернет.

Выбираем тот адаптер, которым Танин комп подключен к сети, жмем «Далее».

Шаг 15

Отмечаем галочкой «Беспроводное сетевое соединение» и жмем «Далее».

Шаг 16

Здесь Вы вольны вводить что хотите или параметры вашей локалки. Короче, просто жмем «Далее».

Шаг 17

Вводим название рабочей группы (любое, можно и по умолчанию) и жмем «Далее».

Шаг 18

Выбираем «Отключить общий доступ», потому что если он понадобится,

Шаг 20

Выбираем пункт «Просто завершить работу мастера» и жмем «Далее».

Шаг 21

Жмем кнопку «Готово». После этого, компьютер предложит перезагрузиться. Соглашаемся.

Потом Ваш компьютер надо подключить к этой ad hoc сети

Вы должны выполнить шаг 1 и 2 из предыдущей части инструкции.

При этом Вы должны увидеть сеть (как в шаге 8), имя которой Вы задавали на шаге 6.

Вот к ней и надо подключиться.

Возможно, придется сделать еще дополнительные действия, чтобы настроить Ваш ноутбук для использования общего подключения к Интернету:

Нажмите кнопку Пуск на панели задач и выберите команду Панель управления.

На панели управления нажмите кнопку Сеть и подключения к Интернету в разделе Выберите категорию.

В этом разделе или на панели управления щелкните значок Свойства Интернет-обозревателя.

В диалоговом окне Свойства обозревателя откройте вкладку Подключения.

Нажмите кнопку Установить.

Будет запущен мастер нового подключения.

На странице Мастер новых подключений нажмите кнопку Далее.

Выберите параметр Подключение к Интернету и нажмите кнопку Далее.

Выберите вариант Установить подключение вручную и нажмите кнопку Далее.

Выберите параметр Подключаться через постоянное высокоскоростное подключение и нажмите кнопку Далее.

На странице Завершение работы мастера новых подключений нажмите кнопку Готово.

Закройте панель управления.

Вроде как всё. Надеюсь, заработает.

Беспроводные ad hoc сети.

Стандарт IEEE 802.11 определяет два режима работы беспроводной локальной сети (WLAN): Режим Ad hoc и режим Инфраструктуры.

Инфраструктурный режим (infrastructure mode) применяется для подключения беспроводных клиентов к существующей проводной сети с помощью специального устройства, называемого беспроводной точкой доступа (wireless access point).

Рисунок 1. Инфраструктурный режим

Одноранговый режим (Ad hoc mode) применяется для построения одноранговых беспроводных сетей без применения точки доступа. Одноранговая беспроводная сеть может содержать до 9 компьютеров, каждый из которых непосредственно связывается с остальными компьютерами.

Рисунок 2. Режим Ad hoc

В режиме Ad Hoc абонентские станции взаимодействуют непосредственно друг с другом без использования точки доступа или Wi-Fi роутера. Этот режим также называют также IBSS (Independent Basic Service Set) или режим Peer to Peer (равный с равным). При такой конфигурации не требуется создания какой-либо сетевой инфраструктуры. При этом создается только одна зона обслуживания, не имеющая интерфейса для подключения к проводной локальной сети. Любые устройства, оснащенные беспроводным сетевым адаптером или интерфейсом Bluetooth и находящиеся в пределах действия радиосигнала, можно объединить друг с другом через сеть Ad hoc. Она оптимально подходит для быстрого обмена данными между несколькими компьютерами, сотовыми телефонами, КПК или ноутбуками, которые необходимо локально и лишь на некоторое время соединить друг с другом.

Сеть Ad hoc представляет собой динамически изменяющаяся сеть с произвольной структурой. Каждый узел сети пересылает данные предназначенные другим узлам. При этом определение того, какому узлу передавать данные, производится динамически, на основании связности сети. Это является их основным отличием от проводных сетей и управляемых беспроводных сетей, в которых задачу управления потоками данных выполняют маршрутизаторы или точки доступа.

Каждое из абонентских устройств, в зависимости от его мощности, обладает своим радиусом действия. Если абонент, находясь «на периферии» посылает пакет абоненту, находящемуся в центре сети, происходит так называемый многоскачковый процесс передачи пакета через узлы, находящиеся на пути заранее проложенного маршрута. Таким образом, каждый новый абонент за счет своих ресурсов увеличивает радиус действия сети. Следовательно, мощность каждого отдельного устройства может быть минимальной. А это предполагает как меньшие стоимости абонентских устройств, так и лучшие показатели безопасности и электромагнитной совместимости.

Рисунок 3. Примерный вид Ad hoc сети

Особенности беспроводных Ad hoc сетей:

Общая среда передачи данных;

Все узлы сети изначально равноправны;

Сеть является самоорганизующейся;

Каждый узел выполняет роль маршрутизатора;

Топология сети может свободно меняться;

В сеть могут свободно входить новые и выходить старые узлы.

Рассмотрим условия успешного построения беспроводной сети в режиме Ad-Hoc:

Прямая видимость между подключаемыми компьютерами.

При подключении в режиме Ad-Hoc очень важным фактором, влияющим на скорость работы сети, является расположение компьютеров в пределах прямой видимости. Это связано с тем, что мощность передатчиков беспроводных адаптеров несколько ниже, чем, мощность точек доступа. Соответственно, радиус действия такой сети примерно вдвое меньше, чем радиус сети, построенной с применением инфраструктурного режима (с использованием точки доступа).

Увеличить радиус действия сети Ad-Hoc можно применяя более мощные антенны. Если между компьютерами существуют преграды, например стены офиса, то радиус работы сети и скорость резко сократится.

Стандарт беспроводных адаптеров.

Как известно, от стандарта, в котором работают сетевые адаптеры, зависит скорость передачи данных в сети. Если на одном компьютере установлено устройство, стандарт которого поддерживает более низкую скорость передачи данных, то скорость работы всей сети будет равна скорости этого адаптера. Поэтому рекомендуется использовать адаптеры единого стандарта.

Количество подключенных компьютеров.

Это связано в первую очередь с особенностями процесса обмена информацией между компьютерами. Для беспроводных сетей, особенно при использовании режима Ad-Hoc, этот фактор является особенно важным. Поэтому для успешного функционирования сети в режиме Ad-Hoc следует ограничить количество подключений (от двух до девяти). Если их количество превышает рекомендуемое, то более выгодным решением в этой ситуации будет использование точки доступа и режима инфраструктуры.

В настоящее время существует несколько «базовых» технологий для построения ad hoc сетей:

Максимальная скорость передачи данных равна 2.1 Мбит/с, радиус действия одного абонентского устройства составляет 1 - 100 м.

Сети на основе Bluetooth применимы лишь на небольшой территории (например, в центрах городов, небольших офисах, магазинах). Так, подобная сеть может служить для организации видеонаблюдения на небольшом объекте.

В тех областях, где основными критериями являются энергопотребление и стоимость, может применяется технология ZigBee. Это недорогой способ организации связи в промышленных системах, не нуждающихся в высокой скорости передачи данных. Скорости передачи данных варьируются от 20 до 250 кбит/с.

Является основной технологией для самоорганизующихся сетей. В сетях WiFi скорость передачи составляет 11 - 108 Мбит/с, что позволяет передавать большие объемы информации в реальном времени (например, видеосигнал).

Для построения сети ad hoc используются адаптеры, подключающееся через слот расширения PCI, PCMCI, CompactFlash. Существуют также адаптеры с подключением через порт USB 2.0. Wi-Fi–адаптер выполняет ту же функцию, что и сетевая карта в проводной сети. Он служит для подключения компьютера пользователя к беспроводной сети. Благодаря платформе Centrino все современные ноутбуки имеют встроенные адаптеры Wi-Fi, которые совместимы со многими современными стандартами. Wi-Fi-адаптерами, как правило, снабжены и КПК (карманные персональные компьютеры), что также позволяет подключать их к беспроводным сетям.

Рисунок 4. Wi-Fi адаптеры.

Основные достоинства режима Ad hoc – быстрое развертывание сети и простота организации (не требуется точка доступа).

К недостаткам такого варианта построения сети относятся малый радиус действия и низкая помехозащищенность.

Режим ad hoc в основном применяется для создания временных сетей передачи данных, например, транспортные, офисные сети, военная связь.

Используемые материалы:

http://www.acorn.net.au/telecoms/adhocnetworks/adhocnetworks.cfm

http://ntrg.cs.tcd.ie/undergrad/4ba2.05/group11/index.html

http://wireless09.livejournal.com/334.html

Пролетарский А. В., Баскаков И. В., Чирков Д. Н. «Беспроводные сети Wi-Fi»

Если в случае «традиционной» беспроводной сети мы должны разворачивать зачастую дорогостоящую инфраструктуру базовых станций, то в случае самоорганизующихся сетей достаточно одной или нескольких точек доступа.

Суть самоорганизующихся сетей — предоставление абоненту возможности доступа к различным сетевым услугам посредством передачи и приема «своего» трафика через соседних абонентов.

Самоорганизующиеся сети связи — сети с изменяемой децентрализованной инфраструктурой. В общем случае данные сети имеют такие преимущества, как широкое покрытие и теоретически широкая абонентская база без большого количества дорогостоящих базовых станций и увеличения мощности излучаемого сигнала.

Если говорить простыми словами, структура простейшей самоорганизующейся сети представляет из себя большое количество абонентов на некоторой площади, которую упрощенно можно назвать площадью покрытия сети, и одну или несколько точек доступа к внешним сетям. Каждое из абонентских устройств, в зависимости от его мощности, обладает своим радиусом действия. Если абонент, находясь «на периферии» посылает пакет абоненту, находящемуся в центре сети или на точку доступа, происходит так называемый многоскачковый процесс передачи пакета через узлы, находящиеся на пути заранее проложенного маршрута. Таким образом можно сказать, что каждый новый абонент за счет своих ресурсов увеличивает радиус действия сети. Следовательно, мощность каждого отдельного устройства может быть минимальной. А это предполагает как меньшие стоимости абонентских устройств, так и лучшие показатели безопасности и электромагнитной совместимости.

На данный момент широким фронтом идут исследования и применения самоорганизующихся сетей в следующих сферах:

Военная связь;

Интеллектуальные транспортные системы;

Локальные сети;

Сенсорные сети;

Обо всех этих направлениях — в следующих статьях.

В настоящее время существует несколько «базовых» технологий для самоорганизующихся сетей:

1. Bluetooth

Самоорганизующиеся на основе Bluetooth состоят из ведущих и ведомых устройств (эти роли могут совмещаться), способных передавать данные как в синхронном, так и в асинхронном режимах. Синхронный режим передачи предполагает прямую связь между ведущим и ведомым устройствами с закрепленным каналом и временными слотами доступа. Данный режим используется в случае ограниченных по времени передач. Асинхронный режим предполагает обмен данными между ведущим и несколькими ведомыми устройствами с использованием пакетной передачи данных. Используется для организации пикосетей. Одно устройство (как ведущее, так и ведомое) может поддерживать до 3-х синхронных соединений.

В синхронном режиме максимальная скорость передачи данных равна 64 кбит/с. Максимальная скорость передачи в асинхронном режиме составляем 720 кбит/с.

Достоинства сетей на базе Bluetooth:

    возможность быстрого развертывания;

    сравнительно малое энергопотребление абонентских устройств;

    широкий спектр поддерживающих эту технологию устройств.

Недостатки сети:

    небольшой радиус действия (радиус действия одного абонентского устройства составляет 0.1 — 100 м);

    малые скорости передачи данных (для сравнения: в сетях WiFi этот показатель составляет 11 — 108 Мбит/с);

    нехватка частотного ресурса.

Возможно, последняя проблема будет решена с выходом устройств Bluetooth 3.0, где предполагается возможность использовать альтернативные протоколы уровней MAC и физического с целью ускоренной передачи данных профилей Bluetooth (AMP). В частности могут быть использованы протоколы стандарта 802.11.

Исходя из вышеприведенного, можно заключить, что сети на основе Bluetooth применимы лишь в местах большого скопления людей (например, в центрах городов, небольших офисах, магазинах). Например подобная сеть может служить для организации видеонаблюдения на небольшом объекте.

Сети стандарта 802.11 изначально были задуманы как способ замены проводных сетей. Однако, относительно высокие скорости передачи (до 108 Мбит/с) делают перспективным возможное применение в тех самоорганизующихся сетях, в которых необходимо передавать большие объемы информации в реальном времени (например, видеосигнала).

2007 году впервые была выпущена черновая версия стандарта 802.11s, определяющего основные характеристики самоорганизующихся сетей на основе WiFi.

В отличии от традиционных сетей WiFi, в которых существует только два типа устройств - «точка доступа» и «терминал», стандарт 802.11s предполагает наличие так называемых «узлов сети» и «порталов сети». Узлы могут взаимодействовать друг с другом и поддерживать различные службы. Узлы могут быть совмещены с точками доступа, порталы же служат для соединения с внешними сетями.

На основе уже существующих стандартов 802.11 можно строить MANET-сети (мобильные самоорганизующиеся сети), отличительной чертой которых можно назвать большую зону покрытия (несколько квадратных километров).

Проблемы, требующие особого внимания при дальнейшем развитии самоорганизующихся сетей на базе WiFi можно разделить на следующие классы:

Проблемы пропускной способности;

Проблемы масштабируемости сетей.

3. ZigBee

Стандарт 802.15.4 (ZigBee) описывает низкоскоростные сети связи малого радиуса действия с маломощными передающими устройствами. Предусмотрено использование трех диапазонов частот: 868-868.6 МГц, 902-928 МГц, 2.4-2.4835 ГГц.

В качестве метода доступа к каналу используется DSSS с различными длинами последовательности для диапазонов 868/915 и 2450 МГц .

Скорости передачи данных варьируются от 20 до 250 кбит/с.

Согласно стандарту сеть ZigBee поддерживает работу с топологиями типа «звезда» и «каждый с каждым».

Существуют два варианта приемопередающих устройств: полнофункциональные (FFD) и неполнофункциональные (RFD). Коренное отличие этих устройств состоит в том, что FFD могут устанавливать прямую связь с любыми устройствами, а RFD — только с FFD.

Сеть ZigBee может состоять из нескольких кластеров, образованных устройствами FFD.

Сети стандарта ZigBee могут работать в режиме mesh. При этом предполагается, что каждый узел сети (узел сети образует устройство FFD, RFD работают в качестве т.н. сенсоров) постоянно следит за состоянием соседних узлов, обновляя при необходимости свои маршрутные таблицы.

В отличии от всех предыдущих вариантов сетей ad hoc, ZigBee рассчитана на низкие скорости передачи данных и проблемы возможности увеличения таковых не существует.