Домой / Мобильные ОС / Что измеряет КСВ-метр? Измеряем КСВ: теория и практика. Схема, описание Что такое ксв метр

Что измеряет КСВ-метр? Измеряем КСВ: теория и практика. Схема, описание Что такое ксв метр

Произвольная нагрузка в общем случае порождает в линии передачи отраженную волну. Накладываясь на падающую, отраженная волна приводит к образованию повторяющихся максимумов и минимумов в продольных распределениях нормированных токов и напряжений, формируя картину смешанных волн. Режим смешанных волн в инженерной практике принято характеризовать коэффициентом бегущей волны (КБВ), представляющим собой отношение минимального значения нормированного полного напряжения (или тока, или напряженности) в линии к максимальному значению полного напряжения (или тока, или напряженности поля) в линии

где |Г| - модуль коэффициента отражения. Часто вместо КБВ пользуются обратной ему величиной, называемой коэффициентом стоячей волны (КСВ)

Коэффициентом отражения называется отношение поперечных компонентов электрического поля для падающей и отраженной волн в одной и той же точке поперечного сечения линии передачи

где Z A – входное сопротивление антенны,

Z В – волновое сопротивление линии передачи (коаксиального кабеля). Зависимость входного сопротивления от частоты рассчитана в предыдущем пункте.

По методу излучаемой мощности получаем

По методу наведенных ЭДС получаем


График зависимости КСВ от длины волны приведен в приложении В.

2.8 Расчет ппф и его ачх

Фильтры СВЧ применяют для частотной селекции сигналов, согласования комплексных нагрузок, в цепях задержки и в качестве замедляющих систем.

Фильтры являются обычно пассивными взаимными устройствами и характеризуются частотной зависимостью вносимого в тракт затухания. Полоса частот с малым затуханием называется полосой пропускания, а полоса частот с большим затуханием – полосой заграждения. По взаимному расположению полосы пропускания и заграждения принято выделять следующие типы фильтров: фильтр нижних частот (ФНЧ), пропускающие сигналы ниже заданной граничной частоты и подавляющие сигналы с частотами выше граничной; фильтры верхних частот (ФВЧ), пропускающие сигналы на частотах выше заданной и подавляющие сигналы других частот; полосно-пропускающие (полосовые) фильтры (ППФ), пропускающие сигналы в пределах заданной полосы частот и подавляющие сигналы вне этой полосы, полосно-заграждающие (режекторные) фильтры (ПЗФ), подавляющие сигналы в пределах заданной полосы частот и пропускающие сигналы вне этой полосы.

Частотная характеристика каждого фильтра имеет переходную область между полосой пропускания и полосой заграждения, то есть между частотами з и п . В этой области затухание меняется от максимального значения до минимального. Обычно стараются уменьшить эту область, что приводит к усложнению фильтра, увеличению числа его звеньев. При проектировании фильтров, как правило, задаются следующие характеристики: полоса пропускания, полоса заграждения, средняя частота, затухание в полосе пропускания, затухание в полосе заграждения, крутизна изменения затухания в переходной области, уровень согласования по входу и по выходу, характеристики линии передачи, в которую включается фильтр, тип линии передачи, иногда оговариваются фазовые характеристики фильтра.

Таблица 2.4 – Исходные характеристики ППФ

2.8.1 Расчет низкочастотного фильтра прототипа

В настоящее время наиболее распространенной методикой расчета фильтров СВЧ является методика, согласно которой вначале рассчитывается низкочастотный фильтр-прототип. Нахождение параметров схемы фильтра-прототипа по заданной частотной характеристике фильтра является задачей параметрического синтеза. Для общности результатов все величины нормируются. Сопротивления нагрузки и генератора принимается равным единице. Наряду с нормировкой по сопротивлению проводится нормировка по частоте, например граничная частота полосы пропускания фильтра принимается равным единице. Таким образом расчет фильтра СВЧ сводится к синтезу схемы НЧ-прототипа и замене элементов с сосредоточенными параметрами их эквивалентами с распределенными параметрами.

Для аппроксимации частотных характеристик применяется ряд функций, удовлетворяющих условиям физической реализуемости фильтров. Наиболее распространенной являются максимально плоская и равноволновая аппроксимации, использующие полиномы Баттерворта и Чебышева соответственно.

Рассчитаем фильтр с максимально плоской характеристикой затухания. Она монотонно возрастает при повышении частоты:

,

где n – число звеньев фильтра прототипа,

=/ п – нормированная частота,

=10 L п/10 -1 – коэффициент пульсаций,

 п – граничная частота полосы пропускания,

L п – затухание на частоте  п (см рисунок 2.3).

Рисунок 2.3 – Максимально плоская характеристика затухания фильтра-прототипа нижних частот

Число звеньев фильтра прототипа может быть найдено из требований к АЧХ фильтра. Так, для фильтра с максимально плоской АЧХ:

,

то есть для нашего фильтра необходимо, чтобы n 2.76 .

Возьмем n =3 , тогда схема фильтра-прототипа будет иметь вид, изображенный на рисунке 2.4

Рисунок 2.4 – Схема фильтра-прототипа нижних частот

Параметры фильтра можно рассчитать по сложным формулам, а можно воспользоваться справочной литературой, например : g 0 =1, g 1 =0.999165, g 2 =1.998330, g 3 =0.999165, g 4 =1.

Денормировки параметров фильтра производится с помощью соотношений

,

,

.

Здесь обозначения со штрихом относятся к нормированным параметрам фильтра-прототипа, без штрихов к денормированным: R 0 `=1, L 1 `=1, C 2 `=2, L 3 `=1, R 4 `=1.

Так как будущий фильтр будем ставить в коаксиальный тракт передачи, то R 0 =75Ом , тогда

2.8.2 Расчет ППФ

Для проектирования ППФ воспользуемся фильтром-прототипом, рассчитанным в предыдущем пункте и реактансное преобразование частоты

где 0 =( п -п ) 0.5 – центральная частота ППФ,

k з =1/2  - коэффициент преобразования,

2  = п - -п – полоса пропускания ППФ.

Любая индуктивность в фильтре прототипе после выполнения частотного преобразования трансформируются в последовательный контур с параметрами

Одновременно любая емкость в фильтре прототипе превращается в параллельный колебательный контур

Рисунок 2.5 – Эквивалентная схема ППФ

Таким образом, ППФ (рисунок 2.5) состоит из каскадно-включенных резонаторов, значения эквивалентных параметров которого получились следующими

2.8.3 Реализация ППФ

По способу реализации ППФ можно разделить на следующие типы: на одиночной МПЛ с зазорами, на параллельных связанных полуволновых резонаторах, на встречных стержнях, с параллельными и последовательными четвертьволновыми шлейфами длиной /4 , где - длина волны в линии, соответствующая средней частоте полосы пропускания ППФ; с двойными шлейфами и четвертьволновыми соединительными линиями на диэлектрических резонаторах.

Выполним ППФ на микрополосковых линиях (МПЛ) с двойными шлейфами и четвертьволновыми соединительными линиями.

МПЛ представляют собой тонкий слой металла, нанесенного на листы диэлектрика. Наиболее распространены экранированные несимметричные МПЛ. МПЛ используются во всем диапазоне СВЧ. По сравнению с прямыми волноводами МПЛ обладают рядом недостатков – имеют более высокие погонные потери и сравнительно низкую передаваемую мощность. Кроме того, открытые МПЛ излучают энергию в пространство, из-за чего могут возникать нежелательные электромагнитные связи.

Но МПЛ обладают и важными достоинствами. Они имеют малые габариты и массу, дешевы в изготовлении, технологичны и удобны для массового производства методами интегральной технологии, что позволяет реализовать на пластине из металлизированного с одной стороны диэлектрика целые узлы и функциональные модули в микрополосковом исполнении.

Реализация последовательных колебательных контуров в МПЛ очень затруднена. Вместе с тем можно последовательное включение перевести в параллельное так, как это показано на рисунке 2.6 с помощью преобразований

Рисунок 2.6 Замена последовательного колебательного контура параллельным

Тождество на рисунке 2.6 выполняется только на резонансной частоте, поэтому получившуюся схему следует подвергать анализу для определения ее частотных свойств.

После замены получим схему ППФ изображенную на рисунке 2.7

Рисунок 2.7 – Эквивалентная схема ППФ

Эта схема имеет следующие значения параметров

Длина соединительной линии будет известна после определения параметров МПЛ.

Для расчета волнового сопротивления МПЛ воспользуемся выражением, полученным в квазистатическом приближении

(2.1)

Точность определения по этой формуле составляет 1% при w / h 0.4 и 3% при w / h <0.4 .

Для расчета длины волны на низких частотах на практике широко используется формула, также полученная в квазистатическом приближении

где - длина волны в свободном пространстве,

э – эффективная диэлектрическая проницаемость линии.

Эффективная диэлектрическая проницаемость может быть вычислена по формуле

, (2.3)

Подложку выполним на диэлектрике с относительной диэлектрической проницаемостью =7 , а толщину подложки примем h =5мм . Ширина металлической полоски w , а соответственно и отношение w / h ,будут меняться при расчетах.

Сначала рассчитаем параметры соединительных линий. Для согласования фильтра с трактом передачи его соединительные линии должны иметь волновое сопротивление равное волновому сопротивлению коаксиала Z 0 =75Ом. Разрешая выражение (2.1) находим, что w / h =0.5, тогда ширина полоски w =0.5 5=2.5(мм) . По формуле (2.3) находим эффективную диэлектрическую проницаемость

Расчет ведем на средней частоте диапазона, поэтому 0 =0.594м , тогда по (2.2) длина волны в линии

Так как соединительная линия четвертьволновая, то ее длину определим по формуле

Параллельная индуктивность реализуется в виде короткозамкнутого параллельного шлейфа. Реактивное сопротивление такого отрезка линии определяется по формуле

(2.4)

Сопротивление этого шлейфа на средней частоте диапазона должно равняться сопротивлению параллельно включенной индуктивности, поэтому можно определить длину отрезка

(2.5)

Примем w / h =1(w =5мм)

Теперь по формуле (2.5) можно определить длину шлейфов, заменяющих каждую индуктивность

Параллельная емкость реализуется в виде параллельного шлейфа разомкнутого на конце. Реактивное сопротивление такого отрезка линии определяется по формуле

Сопротивление этого шлейфа на средней частоте диапазона должно равняться сопротивлению параллельно включенной емкости, поэтому можно определить длину шлейфа

(2.6)

Примем w / h =0.2(w =1мм) , тогда по (2.1)-(2.3) получаем

Теперь по формуле (2.5) можно определить длину шлейфов, заменяющих каждую емкость

Занесем параметры шлейфов в таблицу 2.5.

Таблица 2.5 Размеры ППФ на МПЛ

Схема ППФ приведена в приложении Д.

2.8.4 Расчет АЧХ

АЧХ фильтра – это есть зависимость вносимого в тракт затухания от частоты. Зная входное сопротивление фильтра можно определить коэффициент отражения

(2.7)

Тогда АЧХ будет иметь следующий вид

(2.8)

Определим АЧХ низкочастотного фильтра прототипа изображенного на рисунке 2.4 после денормировки параметров

Подставляя в (2.7) и (2.8) получим характеристику затухания.

Определим АЧХ эквивалентной схемы ППФ изображенной на рисунке 2.5

Подставляя в (2.7) и (2.8), получим необходимую характеристику затухания.

Теперь определим АЧХ фильтра на МПЛ. Зависимость от частоты сопротивлений индуктивных и емкостных шлейфов определяется формулами

где i=1,2,3;

Z 0 L и Z 0 C – волновые сопротивления индуктивных и емкостных шлейфов соответственно.

Входное сопротивление фильтра

Конечная формула для входного сопротивления имеет очень сложный вид, поэтому не будем ее здесь приводить. По формулам (2.7) и (2.8) получим АЧХ.

Все АЧХ полученные в этом пункте приведены в приложении Г.

Какую выбрать антенну на автомобиль? Тут вариантов много. От самых дешевых и самых простых "удочек" до очень дорогих и длинных. Очевидно, надо выбирать, какого размера штырь еще не страшно ставить на авто. В общем, чем длиннее штырь, тем лучше связь (при условии, что антенна согласована).

Как настроить антенну? Для этого нужен пpибоp - КСВ-метp. Hе надо думать что можно настроить антенну без него. КСВ-метр стоит около 1000 руб. Hастраивать антенну в пеpвом приближении надо по минимуму КСВ (коэффициент стоячей волны), требуется добиться КСВ меньше 1,5; обычно автомобильную удается довести до 1,1. Надо иметь в виду, что работа при КСВ >3 может привести к повреждению выходного каскада передатчика импортной Си-Би рации (у раций производства КБ Беркут передатчики менее критичны к настройке антенн, из строя не выходят).

Вообще настойка и выбор антенн дело отдельного FAQ.

О чем надо помнить при выборе антенны? Антенна - лучший усилитель. Хорошая антенна позволит сэкономить на усилителе. Тем более что усилитель всё равно нельзя применять без достаточно хорошей антенны – он попросту выйдет из строя при плохом КСВ (хуже 2, если усилитель достаточно мощный).

Что такое фидер? Фидер, фидерная линия - это линия связи станции и антенны. В общем случае коаксиальный кабель с волновым сопротивлением 50 Ом. Фидер вносит потери в сигнал, поэтому кабель с меньшими потерями стоит дороже, но при большой длине может себя оправдывать. Фидер, питающий антенну, может работать в нескольких режимах:

Ненастроенный фидер Идеальное согласование (КСВ=1) получается при равенстве выходного сопротивления радиостанции, волнового сопротивления фидера (в частном случае коаксиального кабеля) и входного сопротивления антенны. Полоса частот, в которой выполняется условие достаточно хорошего согласования, определяется изменением комплексного выходного и входного сопротивлений передатчика и антенны соответственно, при изменении рабочей частоты. При работе в этом режиме длина фидера может быть произвольной. Большинство современных радиостанций и промышленных антенн имеют вх./вых. сопротивления (теоретически) 50 Ом и, при применении кабеля с волновым сопротивлением 50 Ом, при настроенной антенне дополнительного согласования не требуется. Промышленные КСВ-метры также рассчитаны на 50 Ом.

Настроенный фидер. При использовании фидера с волновым сопротивлением, отличным от входного и выходного сопротивлений антенны и pадиостанции также можно добиться идеального согласования (КСВ=1). Достаточные условия для этого равенство входного и выходного сопротивлений антенны и pации, и длина фидера, кратная половине длины волны в фидере (т.е. с учетом коэффициента укорочения). В этом случае фидер работает в режиме (полуволнового) повторителя. Т.е. независимо от волнового сопротивления фидера, он не оказывает влияния на согласование антенны с p-ст. С этим связан известный способ "настройки" кабеля. К выходу p-ст (считаем 50 Ом) подключается КСВ-метр, затем кабель. К концу кабеля подключается эквивалент нагрузки - безиндукционный резистор 50 Ом. Постепенно укорачивая кабель, добиваются КСВ = 1. В этом случае длина кабеля должна получиться кратной полуволне (которая в кабеле RG-58c/u с полиэтиленовой изоляцией для СВ равна магическому числу 3.62 метра). при значительном изменении рабочей частоты согласование нарушается (т.к. меняется длина волны в кабеле).

Какие типы кабеля и разъёмов используются для подключения антенн? При подключении антенны к портативкам используют разъём TNC (резьбовой, надёжный) и BNC (отечественный СР-50) - байонетный, несколько менее надёжный, и кабель типа RG-58 с разными буквами (по электрическим свойствам).

На автомобилях используют разъём PL259 для тонкого кабеля (RG-58) и этот кабель (RG-58).

На базе используют разъём PL259 для толстого кабеля и кабель RG-213 (толстый с пониженными потерями). Существуют переходники с любого разъёма на любой.

Отечественный кабель используют в основном РК-50-2 (тонкий) и РК-50-7 (толстый) для базы.

Что такое согласование антенны? Грубо говоря коэффициент полезного действия системы станция-фидеp-антенна, а также процесс получения максимального кпд. Зависит от частоты, т.е. на одной частоте, например, в 20 канале сетки C оно хорошее, а в каналах 1 и 40 той же сетки C оно может быть плохим. Подстраивается длиной штыревой антенны или фидерного кабеля, или специальным согласующим устройством, по-английски - матчером. В общем случае эквивалентное сопротивление на антенном разъёме станции (усилителя) 50 Ом. Эквивалентное сопротивление разных антенн существенно разное, от 30 до нескольких тысяч Ом. В фирменных антеннах уже сделано конструктивное согласование, самоделки лучше подключать через матчер, но, поскольку сопротивление антенны зависит ещё и от местных условий, любую антенну надо подстраивать на месте.

Что представляет собой матчеp? В простейшем случае П-контуp, состоящий из катушки индуктивности и двух переменных емкостей. Подстраивая эти ёмкости, можно изменять входное и выходное комплексное сопротивление этого четыpехполюсника, чем и достигается согласование.

Что такое КСВ? Коэффициент стоячей волны - мера согласования. Бывает от 1 (идеал) до 3 (плохо, но работать можно), 4...5 - работать не рекомендуется, может оказаться и больше. Измеряется специальным прибором - КСВ-метром. Пользуются им так: прибор включить между антенной и усилителем (станцией). Внимание: прибор должен допускать работу при Вашей мощности!!! Переключатель поставить в положение FWD (прямое включение). Включите передачу, выставьте ручкой стрелку на конец шкалы, переключите прибор в положение REF, включите передачу, считайте значение КСВ.

Потери мощности:

КСВ=1- потери 0%

КСВ=1,3 - потери 2%

КСВ=1,5 - потери 3%

КСВ=1,7 - потери 6%

КС=2 - потери 11%

КСВ=3 - потери 25%

КСВ=4 - потери 38%

КСВ=10- потери 70%

Но прирост в эффективности за счёт длины - как правило- гораздо существеннее потерь в мощности - т.е. более длинная антенна с худшим КСВ обычно лучше, чем короткая антенна с хорошим КСВ (в формулах дальность пропорциональна корню четвёртой степени из мощности (при сильных электромагнитных помехах скорее корню квадратному), т.е. потеря мощности на 16% приведёт к уменьшению дальности на 2-4%). А вот физические размеры антенны, высота верхней точки над землёй - во все формулы дальности связи входят как прямая пропорциональность дальности, а отнюдь не корни квадратные или 4-ой степени, т.е. влияют на дальность радиосвязи гораздо сильнее).

Антенна - устройство преобразующее колебания электрического тока в волну электромагнитного поля (радиоволну) и обратно.

Антенны обратимые устройства, то есть как антенна работает на передачу, так она будет работать и на приём, если работает эффективно на приём то будет работать хорошо и на передачу.

Фидер - кабель соединяющий радиостанцию с антенной.
Кабели бывают разного волнового сопротивления и разной конструкции.
Так как в радиостанциях гражданского диапазона выходное/входное сопротивление 50 Ом и несимметричный выход, то нам подходят в качестве фидера коаксиальные кабели с волновым сопротивлением 50 Ом, например: РК 50-3-18 или RG 8 или RG 58.
Не нужно путать волновое сопротивление и омическое. Если тестером померить сопротивление кабеля то тестер покажет 1 Ом, хотя волновое сопротивление у этого кабеля может быть 75Ом.
Волновое сопротивление коаксиального кабеля зависит от соотношения диаметров внутреннего проводника и внешнего проводника (у кабеля с волновым сопротивлением 50 Ом центральная жила толще чем у 75-ти Ом-ного кабеля того же внешнего диаметра).

КСВ - коэффициент стоячей волны, то есть соотношение мощности которая идёт по кабелю до антенны и мощности, которая возвращается по кабелю отражаясь от антенны в связи с тем, что её сопротивление не равно сопротивлению кабеля.
Да, высокочастотное напряжение ходит по проводам не так как постоянный ток, оно может отражаться от нагрузки, если нагрузка или кабель не того волнового сопротивления.
КСВ показывает качество передачи энергии из радиостанции в антенну и обратно, чем меньше КСВ тем лучше согласована радиостанция с фидером и антенной. КСВ не может быть меньше 1.
КСВ не показывает эффективность антенны и на какой частоте она эффективнее работает. Например, КСВ будет 1, если на конце кабеля подключен резистор 50 Ом, но на резистор вас никто не услышит и вы никого на него не услышите.

Как работает антенна?

Переменный ток, как известно, меняет свою полярность с некой частотой. Если речь идёт от 27Мгц, то значит 27 миллионов раз в секунду полярность (+/-) у него меняются местами. Соответственно 27 миллионов раз в секунду электроны в кабеле бегут то слева на право, то справа на лево. Учитывая, что электроны бегают со скоростью света 300 миллионов метров в секунду, то для частоты 27 мегагерц до смены полярности тока они успевают пробежать лишь 11 метров (300/27), а потом возвращаются обратно.
Длина волны - расстояние, которое пробегают электроны до тех пор, пока их потянет обратно сменившейся полярностью источника.
Если к выходу радиостанции мы подключим кусок провода, другой конец которого просто висит в воздухе, то в нём и будут бегать электроны, бегающие электроны создают вокруг проводника магнитное поле, а на его конце электростатический потенциал, которые будут меняться с частотой, на которой работает радиостанция, то есть провод создаст радиоволну.
Минимальное расстояние, которое должны пробегать электроны, что бы шло эффективное преобразование переменного тока в радиоволну и радиоволны в ток равно 1/2 длины волны.
Так как любой источник тока (напряжения) имеет два вывода, то получается минимальная эффективная антенна состоит из двух кусков провода длиной по 1/4 длины волны (1/2 делить на 2), при этом один кусок провода подключен к одному выводу источника (выходу радиостанции), другой в к другому выводу.
Один из проводников называют излучающим и подключают к центральной жиле кабеля, другой "противовесом" и подключают к оплётке кабеля.
* Если расположить 2 куска провода каждый длиной 1/4 длины волны, один над другим, сопротивление такой антенны будет примерно 75 Ом, кроме того, она будет симметричная, то есть напрямую коаксиальным (не симметричным) кабелем её подключать не очень хорошая идея.

Стоп, как же работают тогда укороченные антенны (например 2 метра на 27МГц) и антенны состоящие только из штыря на автомобиле?
Для штыря на машине - штырь это первый кусок провода ("излучатель"), а кузов машины второй провод ("противовес").
В укороченных антеннах часть провода скручена в катушку, то есть для электронов длина штыря равна 1/4 длины волны (2 метра 75 см на 27МГц), а для хозяина штыря всего 2 метра, остаток находится в катушке, которая спрятана от непогоды в основании антенны.

Что будет, если к радиостанции подключить очень короткие или очень длинные провода в качестве антенны?
Как уже говорилось выше, волновое сопротивление выхода/входа радиостанции 50 Ом, соответственно антенна, являющаяся для неё нагрузкой, должна иметь тоже сопротивление 50 Ом.
Провода короче или длиннее 1/4 длины волны будут обладать другим волновым сопротивлением. Если провода короче, то электроны будут успевать добежать до конца провода и хотеть бежать дальше, прежде чем их потянет обратно, соответственно они уткнуться в конец провода, поймут что там обрыв, то есть большое, бесконечное сопротивление и сопротивление всей антенны будет большим, тем больше, чем провод короче. Слишком длинный провод тоже будет работать не правильно, его сопротивление тоже будет выше, чем нужно.
Электрически короткую антенну сделать эффективной невозможно, она всегда проиграет электрической длине 1/4, электрически длинная антенна требует согласования по сопротивлению.
* Разница "электрически короткой" от "физически короткой" в том, что можно скрутить в катушку провод достаточной длины, при этом физически катушка будет не такой длинной. Такая антенна будет достаточно эффективна, но на малом числе каналов и в любом случае проиграет штырю длиной 1/4 длины волны.
Ещё важно понимать, что от того, под каким углом друг к другу находятся проводники антенны, излучатель и противовес, тоже зависит не малое - её направленность (направление её излучения) и её волновое сопротивление.

Так же есть такое явление как коэффициент укорочения антенны, это явление связано с тем, что проводники имеют толщину, а конец проводника ёмкость к окружающему пространству. Чем толще проводник антенны и чем выше частота на которой должна работать антенна, тем больше укорочение. Так же чем толще проводник из которого сделана антенна, тем она широкополоснее (больше каналов перекрывает).

Направленные антенны и поляризация излучения

Антенны бывают:
+ С горизонтальной поляризацией - проводники антенны расположен горизонтально;
+ С вертикальной поляризацией - проводники расположены вертикально.
Если попытаться принимать на антенну с вертикальной поляризацией сигналы передаваемые антенной с горизонтальной поляризацией, то будет проигрыш в 2 раза (3дБ) по сравнению с приёмом на антенну той же поляризации как и передающая.

Кроме того, антенны могут быть:
+ Направленные - когда излучение и приём волн идёт в неком одном или нескольких направлениях.
+ Не направленные (с круговой диаграммой направленности) - когда радиоволны излучаются и принимаются равномерно со всех направлений.

Пример: вертикальный штырь имеет круговую диаграмму направленности в горизонтальной плоскости, то есть одинаково излучает и принимает радиоволны от источников вокруг себя.

Что такое усиление антенн?

Если речь идёт именно об усилении антенны, а не об усилителе подключенном к антенне и требующим проводов питания, то усиление антенны, это её способность концентрировать радиоволны в некоторой плоскости или направлении, туда, где находятся желаемые для связи корреспонденты.
Например, вертикально расположенные два штыря по 1/4 длинны волны (вертикальный диполь), излучают равномерно по кругу, но это если смотреть сверху на него, а если сбоку, то окажется что часть энергии излучается в землю, а часть в космос. Коэффициент усиления диполя равен 0 dBd. В земле и в космосе для нас нет полезных сигналов, соответственно путём изменения конфигурации диполя (удлинив одну его часть до 5/8 длины волны) можно добиться, что излучение сосредоточится в горизонте, а в космос и в землю будет излучаться мало, усиление такой антенны составит примерно 6 dBd.

Если вам интересно узнать в подробностях как работают антенны, фидеры, увидеть полные формулы, почитайте книгу: К.Ротхаммель Антенны.

Напомним главное:

Длина волны = 300 / частота канала связи

Минимальная длина эффективной антенны = длина волны / 2

Чем толще проводники из которых сделана антенна, тем больший вклад вносит коэффициент укорочения в её длину.

КСВ показывает качество передачи энергии от радиостанции в антенну, но не показывает эффективность антенны.

Теперь на примерах:
300 / 27,175 = 11 метров 3 сантиметра длина волны.
Вся антенна для эффективной работы должна иметь длину 5 метров 51 сантиметр, соответственно штырь будет иметь длину 2 метра 76 сантиметров.
С учётом К_укорочения для штыря из трубки диаметром 20мм длина штыря будет примерно 2 метра 65 сантиметров.

Какие антенны обычно применяют на гражданском диапазоне

Антенна 1/4 ГП ("гэпэшка" или "четвертушка")

Штырь на врезном или магнитном основании, внутри которого установлена удлиняющая катушка, дополняющая его электрическую длину до 1/4. Противовесом является кузов автомобиля, который подключен или напрямую (для врезных антенн) или через ёмкость конденсатора образуемого магнитом основания и поверхностью кузова.

На высокочастотных диапазонах, таких как LPD и PMR обычно применяют гэпэшки или 5/8, даже в автомобиле и в носимом варианте, в базовом варианте применяют коллинеарные антенны (антенные системы из электрически и механически связанных между собой нескольких антенн 1/2 или 5/8, что позволяет достигать К_усиления антенны 10 dbi и более, то есть сжимать излучение в тонкий горизонтальный блин).

Сегодня КСВ-метры есть практически на любой любительской радиостанции - встроенные в фирменную аппаратуру, самостоятельные фирменные приборы или самодельные. Результаты их
работы (КСВ антенно-фидерного тракта) широко обсуждаются радиолюбителями.

Как известно, коэффициент стоячей волны в фидере однозначно определяется входным импедансом антенны и волновым сопротивлением фидера. Эта характеристика антенно-фидерного тракта не зависит ни от уровня мощности, ни от выходного сопротивления передатчика. На практике его приходится измерять на некотором удалении от антенны - чаще всего непосредственно у трансивера. Известно, что фидер трансформирует входной импеданс антенны в некоторые его значения, которые определяются длиной фидера. Но при этом в любом сечении фидера они такие, что соответствующее им значение КСВ не изменяется. Другими словами, он в отличие от импеданса, приведённого к дальнему от антенны концу фидера, не зависит от длины фидера, поэтому измерять КСВ можно и непосредственно у антенны, и на некотором удалении от неё (например, у трансивера).

В радиолюбительских кругах ходит немало легенд о «полуволновых повторителях», якобы улучшающих КСВ. Фидер с электрической длиной в половину рабочей длины волны (или в их целое число) действительно является «повторителем» - импеданс на дальнем от антенны его конце будет равен входному импедансу антенны. Единственная польза от этого эффекта - возможность дистанционно измерить входной импеданс антенны. Как уже отмечалось, на значение КСВ (т.е. на энергетические соотношения в антенно- фидерном тракте) это не влияет.

На самом деле при удалённом от точки подключения фидера к антенне измерении КСВ регистрируемое его значение всегда несколько отличается от истинного. Эти отличия объясняются потерями в фидере. Они строго детерминированы и могут только «улучшить» регистрируемое значение КСВ. Однако это эффект часто на практике бывает незначительным, если используется кабель с малыми погонными потерями и длина самого фидера сравнительно небольшая.

Если входной импеданс антенны не является чисто активным и равным волновому сопротивлению фидера, в нём устанавливаются стоячие волны, которые распределены по фидеру и состоят из чередующихся минимумов и максимумов ВЧ напряжения.

На рис. 1 показано распределение напряжения в линии при чисто активной нагрузке, несколько большей волнового сопротивления фидера. При наличии в нагрузке реактивности распределение напряжения и тока смещается влево или вправо по оси ^ в зависимости от характера нагрузки. Период повторения минимумов и максимумов по длине линии определяется рабочей длиной волны (в коаксиальном фидере - с учётом коэффициента укорочения). Их характеристикой и является значение КСВ - отношение максимального и минимального напряжения в этой самой стоячей волне, т. е. КСВ = Umax/Umin.

Напрямую значения этих напряжений определяют только с помощью измерительных линий, которые в любительской практике не применяют (в диапазоне коротких волн - и в профессиональной тоже) Причина тому простая: чтобы иметь возможность измерить изменения этого напряжения по длине линии, её длина должна быть заметно больше, чем четверть волны. Иными словами, даже для самого высокочастотного диапазона 28 МГц она должна быть уже несколько метров и соответственно ещё больше для низкочастотных диапазонов.
По этой причине и были разработаны малогабаритные датчики прямой и обратной волн в фидере («направленные ответвители»), на основе которых и изготавливают современные измерители КСВ в диапазонах коротких волн и в низкочастотном участке УКВ диапазона (примерно до 500 МГц). Они измеряют высокочастотное напряжение и токи (прямой и обратный) в конкретной точке фидера, а на основании уже этих измерений и вычисляется соответствующий им КСВ. Математика позволяет вычислить его точно по этим данным - с этой точки зрения метод абсолютно честный. Проблема состоит в погрешности датчиков как таковых.

По физике работы таких датчиков они должны измерять ток и напряжение в одной и той же точке фидера. Существует несколько вариантов исполнения датчиков - схема одного из самых распространённых вариантов приведена на рис. 2.

Они должны быть выполнены так, чтобы при нагрузке измерительного узла эквивалентом антенны (резистивной безындукционной нагрузкой с сопротивлением, равным волновому сопротивлению фидера) напряжение на датчике, которое снимается с ёмкостного делителя на конденсаторах С1 и С2, и напряжение на датчике тока, которое снимается с половин вторичной обмотки трансформатора Т1, были равны по амплитуде и сдвинуты по фазе точно на 180° или 0° соответственно. Причём эти соотношения должны сохраняться во всей полосе частот, на которую рассчитан данный измеритель КСВ. Далее эти два ВЧ напряжения либо суммируются (регистрация прямой волны), либо вычитаются (регистрация обратной волны).
Первым источником погрешностей при этом методе регистрации КСВ является то, что датчики, особенно в самодельных конструкциях, не обеспечивают названные выше соотношения между двумя напряжениями во всей полосе частот. Как результат, происходит «разбаланс системы» - проникание ВЧ напряжения из канала, обрабатывающего информацию о прямой волне, в канал, делающий это для обратной волны, и наоборот. Степень развязки этих двух каналов принято характеризовать коэффициентом направленности прибора. Даже у вроде бы хороших приборов, предназначенных для радиолюбителей, и тем более у самодельных, он редко превышает 20…25 дБ.

Это означает, что нельзя доверять показаниям подобного «измерителя КСВ» при определении небольших значений КСВ. Причём в зависимости от характера нагрузки в точке измерения (а она зависит от длины фидера!) отклонения от истинного значения могут быть в ту или иную сторону. Так, при коэффициенте направленности прибора 20 дБ значению КСВ=2 могут соответствовать показания прибора от 1,5 до 2,5. Вот почему один из методов проверки подобных приборов - измерение КСВ, не равного 1 при длинах фидера, отличающихся на четверть рабочей длины волны. Если будут получены различные значения КСВ, это лишь говорит о том, что у конкретного КСВ-метра недостаточный коэффициент направленности…
Именно этот эффект и породил, по-видимому, легенду о влиянии длины фидера на КСВ.

Ещё один момент - это не совсем «точечный» характер измерений в таких приборах (точки съёма информации о напряжении и токе не совпадают).

Влияние этого эффекта менее значимо. Другой источник погрешностей - падение эффективности выпрямления диодов датчиков при малых ВЧ напряжениях. Эффект этот известен большинству радиолюбителей. Он приводит к «улучшению» КСВ при его малых значениях. По этой причине в КСВ-метрах практически никогда не используют кремниевые диоды, у которых зона неэффективного выпрямления гораздо больше, чем у германиевых или у диодов Шотки. Наличие этого эффекта в конкретном приборе легко проверяется изменением уровня мощности, при котором производятся измерения. Если КСВ начинает «возрастать» при увеличении мощности (речь идёт о его малых значениях), значит диод, ответственный за регистрацию обратной волны, явно занижает соответствующее ей значение напряжения.

При ВЧ напряжении на выпрямителе датчика меньше 1 В (эффективное значение) линейность вольтметра, в том числе и выполненного с использованием германиевых диодов, нарушается. Этот эффект можно минимизировать, производя градуировку шкалы КСВ-метра не расчётным путём (как это часто делают), а по реальным значениям КСВ нагрузки.

Ну и, наконец, нельзя не упомянуть ток, протекающий по внешней оплётке фидера. Если не приняты соответствующие меры, он может быть заметным и влиять на показания прибора. В его отсутствии обязательно надо убедиться при измерениях КСВ реальных антенн.

Все эти проблемы присутствуют и в приборах заводского изготовления, но особенно они обостряются в самодельных конструкциях. Так, в подобных устройствах не последнюю роль может играть даже недостаточная экранировка внутри блока датчиков прямой и обратной волн.

Что касается приборов заводского изготовления, то для иллюстрации их реальных характеристик можно привести данные из обзора, опубликованного в . В лаборатории ARRL были проверены пять измерителей мощности и КСВ разных фирм. Цена - от 100 до 170 долларов США. Четыре прибора использовали двухстрелочные индикаторы прямой и обратной (отражённой) мощности, позволявшие сразу считывать значение КСВ по объединённой шкале прибора. Практически все приборы имели заметную погрешность измерения мощности (до 10…15%) и заметную неравномерность её индикации по частоте (в полосе частот 2…28 МГц). То есть можно ожидать, что погрешность отсчёта КСВ будет выше приведённых значений. Более того, не все приборы, будучи подключёнными к эквиваленту антенны, показывали КСВ=1. Один из них (не самый дешёвый) даже показал 1,25 на частоте 28 МГц.
Иными словами, надо быть аккуратным при проверке самодельных КСВ-метров по приборам, которые выпускаются для радиолюбителей. И в свете сказанного совсем смешно звучат заявления некоторых радиолюбителей, которые нередко можно услышать в эфире или прочитать в радиолюбительских статьях в Интернете или в журналах, что у них КСВ, к примеру, 1,25… Да и целесообразность введения в подобные приборы цифрового отсчёта значений КСВ представляется не такой уж целесообразной.

Борис СТЕПАНОВ

При монтаже и настройке систем радиосвязи часто измеряют некую не всем и не совсем ясную величину называемую КСВ. Что же это за характеристика, помимо спектра частот указываемая в характеристиках антенн?
Отвечаем:
Коэффициент стоячей волны (КСВ), коэффициент бегущей волны (КБВ), обратные потери это - термины, характеризующие степень согласования радиочастотного тракта.
В высокочастотных линиях передачи соответствие сопротивления источника сигнала волновому сопротивлению линии определяет условия прохождения сигнала. При равенстве этих сопротивлений в линии возникает режим бегущей волны, при котором вся мощность источника сигнала передается в нагрузку.

Измеренное на постоянном токе тестером сопротивление кабеля покажет либо холостой ход либо короткое замыкание в зависимости оттого, что подключено к другому концу кабеля, а волновое сопротивление коаксиального кабеля, определяется соотношением диаметров внутреннего и внешнего проводников кабеля и характеристиками изолятора между ними. Волновое сопротивление это сопротивление, которое оказывает линия бегущей волне высокочастотного сигнала. Волновое сопротивление постоянно вдоль линии и не зависит от её длины. Для радиочастот волновое сопротивление линии считают неизменным и чисто активным. Оно приблизительно равно:
где L и С распределенные емкость и индуктивность линии;




Где: D – диаметр внешнего проводника, d – диаметр внутреннего проводника, - диэлектрическая проницаемость изолятора.
При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов.
При использовании меди для внутреннего и внешнего проводников радиочастотного кабеля справедливы соотношения:
минимальное затухание в кабеле достигается при отношении диаметров

максимальная электрическая прочность достигается при:

максимум передаваемой мощности при:

исходя из этих соотношений, выбраны волновые сопротивления радиочастотных кабелей, выпускаемых промышленностью.
Точность и стабильность параметров кабеля зависят от точности изготовления диаметров внутреннего и внешнего проводников и стабильности параметров диэлектрика.
В идеально согласованной линии отражение отсутствует. Когда сопротивление нагрузки равно волновому сопротивлению линии передачи, падающая волна полностью поглощается в нагрузке, отраженная и стоячая волны отсутствуют. Такой режим называется режимом бегущей волны.
При коротком замыкании или холостом ходе линии на конце линии, падающая волна полностью отражается обратно. Отраженная волна складывается с падающей, и результирующая амплитуда в любом сечении линии является суммой амплитуд падающей и отраженной волн. Максимум напряжения называется пучностью, минимум напряжения узлом напряжения. Узлы и пучности не движутся относительно линии передачи. Такой режим называется режимом стоячей волны.
Если на выходе линии передачи подключена произвольная нагрузка, только часть падающей волны отражается обратно. В зависимости от степени рассогласования возрастает отраженная волна. В линии одновременно устанавливаются стоячая и бегущая волны. Это режим смешанных или комбинированных волн.
Коэффициент стоячей волны (КСВ) это безразмерная величина, характеризующая соотношение падающей и отраженной волн в линии, то есть степень приближения к режиму бегущей волны:
; как видно по определению, КСВ может меняться от 1 до бесконечности;
КСВ меняется пропорционально соотношению сопротивления нагрузки к волновому сопротивлению линии :

Коэффициент бегущей волны это величина обратная КСВ:
КБВ= может меняться от 0 до 1;

  • Обратные потери (return loss) - это отношение мощностей падающей и отраженной волн, выраженное в децибелах.

или наоборот:
Обратные потери удобно использовать при оценке эффективности фидерного тракта, когда потери кабеля, выражаемые в дБ/м можно просто просуммировать с обратными потерями.
Величина потерь на рассогласование зависит от КСВ:
в разах или в децибелах.
Передаваемая энергия при несогласованной нагрузкевсегда меньше, чем при согласованной. Передатчик, работающий на несогласованную нагрузку, не отдает в линию всю ту мощность, которую бы отдавал в согласованную. Фактически, это не потери в линии, а снижение мощности, отдаваемой в линию передатчиком. Насколько влияет КСВ на снижение, видно из таблицы:

Мощность попадающая в нагрузку

Обратные потери
RL

Важно понимать, что:

  • КСВ одинаков в любом сечении линии и не может регулироваться изменением длины линии. Если показания измерителя КСВ при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию измерителя, но не на то, что КСВ изменяется вдоль линии.
  • Отраженная мощность не попадает обратно в передатчик не нагревает и не повреждает его. Повреждения могут быть вызваны работой выходного каскада передатчика на рассогласованную нагрузку. Выход из передатчика, поскольку на его выходе могут в неблагоприятном случае сложиться напряжение выходного сигнала и отражённая волна, может произойти из-за превышения максимального допустимого напряжения полупроводникового перехода.
  • Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии.

Измеряют КСВ, например, с помощью двух направленных ответвителей, включённых в тракт в противоположных направлениях или измерительного мостового рефлектометра, что позволяет получить сигналы пропорциональные падающему и отраженному сигналу.

Для измерения КСВ могут использоваться различные приборы. Сложные приборы имеют в своем составе генератор качающейся частоты, позволяющий увидеть панорамную картину КСВ. Простые приборы состоят из ответвителей и индикатора, а источник сигнала используется внешний, например, радиостанция.

Например, двухблочный РК2-47 за счет широкополосного мостового рефлектометра обеспечивал измерение в диапазоне 0,5-1250MГц.


Р4-11 служил для измерения КСВН, фазы коэффициента отражения, модуля и фазы коэффициента передачи в диапазоне 1-1250МГц.
Импортные приборы для измерения КСВ ставшие классическими от Bird и Telewave:

Или попроще и подешевле:

Популярны простые и недорогие панорамные измерители от AEA:

Измерение КСВ может проводиться как в конкретной точке спектра, так и в панораме. В этом случае на экране анализатора могут быть выведены значения КСВ в указанном спектре, что удобно для настройки конкретной антенны и исключает промах при обрезке антенны.
К большинству системных анализаторов существуют control head - рефлектометрические мосты, позволяющие с высокой точностью измерять КСВ в частотной точке или в панораме:

Практическое измерение заключается в подключении измерителя к разъёму испытуемого устройства или в разрыв тракта при использовании прибора проходного типа. Значение КСВ зависит от многих факторов:

  • Перегибов, дефектов, неоднородностей, спаек в кабелях.
  • Качества разделки кабеля в радиочастотных соединителях.
  • Наличия переходных соединителей
  • Попадания влаги в кабели.

При измерении КСВ антенны через фидер с потерями, испытательный сигнал в линии затухает и фидер внесет погрешность, соответствующую потерям в нем. И падающая, и отраженная волны испытывают затухание. В таких случаях КСВН рассчитывается:
где k - коэффициент ослабления отраженной волны, который вычисляется: k=2BL ; В - удельное затухание, дБ/м; L - длина кабеля, м, при этом
множитель 2 учитывает, что сигнал ослабляется дважды - на пути к антенне и на пути от антенны к источнику, на обратном пути.
Например, используя кабель с удельным затуханием 0,04 дБ/м, ослабление сигнала на длине фидера 40 метров составит 1,6 дБ в каждую сторону, всего 3,2 дБ. Значит, вместо действительного значения КСВ=2,0 прибор покажет 1,38; при КСВ=3,00 прибор покажет около 2,08.

Например, если Вы проверяете фидерный тракт с потерями 3дБ, антенну с КСВ 1,9 и используете передатчик мощностью 10 Вт как источник сигнала для проходного измерителя, то падающая мощность, измеренная прибором составит 10Вт. Поданный сигнал ослабится фидером в 2 раза, от антенны отразится 0,9 пришедшего сигнала и, наконец, отраженный сигнал на пути к прибору ослабится ещё в 2 раза. Прибор честно покажет соотношение падающего и отраженного сигналов падающая мощность 10Вт и отраженная 0,25Вт. КСВ получится 1,37 вместо 1,9.

Если будет использоваться прибор с встроенным генератором, то мощности этого генератора может оказаться недостаточной, чтобы на детекторе отраженной волны создать нужное напряжение и Вы увидите шумовую дорожку.

В общем случае, усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии не дают результата с точки зрения увеличения эффективности излучения антенны, и целесообразны в тех случаях, если схема защиты передатчика срабатывает, например, при КСВ>1,5 или расстраиваются частотнозависимые цепи, подключенные к фидеру.

Наша компания предлагает широкий спектр измерительного оборудования различных производителей вкратце рассмотрим их:
MFJ
MFJ-259 – достаточно простой в эксплуатации прибор для комплексного измерения параметров систем работающих в диапазоне от 1 до 170 МГц.

КСВ-метр MFJ-259 очень компактный, его можно использовать как с внешним источником питания низкого напряжения, так и с внутренним комплектом батарей типа АА.

MFJ-269
КСВ-метр MFJ-269 компактным комбинированным прибор с автономным питанием.
Индикация режимов работы осуществляется на жидкокристаллическом дисплее, а результатов измерений - на ЖКД и стрелочных приборах, расположенных на лицевой панели.
MFJ-269 позволяет производить большое количество дополнительных антенных измерений: РЧ импеданса, потерь в кабелях и их электрических длин до места обрыва или короткого замыкания.


Технические характеристики

Диапазон частот, МГц

Измеряемые характеристики

  • электрическую длину (в футах или градусах);
  • потери в фидерных линиях (дБ);
  • ёмкость (пФ);
  • импеданс или значение Z (ом);
  • фазовый угол импеданса (в градусах);
  • индуктивность (мкГн);
  • реактивное сопротивление или Х (ом);
  • активное сопротивление или R (ом);
  • резонансную частоту (МГц);
  • обратные потери (дБ);
  • частоту сигнала (МГц);
  • КСВ (Zo программируется).

200х100х65 мм

Диапазон рабочих частот КСВ-метра разбит на поддиапазоны:1,8…4 МГц, 27…70 МГц, 415…470 МГц, 4,0…10 МГц, 70…114 МГц, 10…27 МГц, 114…170 МГц

Измерители КСВ и Мощности Comet
Серия измерителей мощности и КСВ Comet представлена тремя моделями:CMX-200 (Измеритель КСВ и мощности, 1,8-200 МГц, 30/300/3 кВт), CMX-1(Измеритель КСВ и мощности, 1,8-60 МГц, 30/300/3 кВт) и, представляющий наибольший интерес, CMX2300 T (Измеритель КСВ и мощности, 1,8-60/140-525 МГц, 30/300/3 кВт, 20/50/200 Вт)
CMX2300 T
Измеритель мощности и КСВ CMX-2300 состоит из двух независимых систем диапазона 1.8-200МГц и диапазона 140-525 МГц с возможностью одновременного измерения этих диапазонов. Проходная структура прибора и, как следствие, невысокая потеря мощности позволяет проводить измерения в течении длительного времени.


Технические характеристики

Диапазон М1

Диапазон М2

Частотный диапазон

1.8 - 200 МГц

140 - 525 МГц

Площадь измерения мощности

0 - 3КВт (HF), 0 - 1КВт (VHF)

Диапазон измерения мощности

Погрешность измерения мощности

±10% (всей шкалы)

Область измерения КСВ

от 1 до бесконечности

Сопротивление

Остаточный КСВ

1.2 и менее

Вносимое затухание

0.2 дБ или менее

Минимальная мощность для измерений КСВ

Приблизительно 6Вт.

М-образный

Питание для ламп подсветки

11 - 15В постоянного тока, приблизительно 450 мА

Габариты (данные в скобках с учетом выступов)

250(Ш) х 93 (98) (В) х 110 (135) (Г)

Приблизительно 1540 г.

Измерители мощности и КСВ Nissen
Зачастую для работы на объекте не требуется сложный и дающий полную картинку, а скорее функциональный и простой в использовании прибор. Именно такими «Рабочими лошадками» и является серия измерителей мощности и КСВ Nissen.
Простая проходная структура и высокое предельное значение мощности до 200 Вт совместно с частотным спектром 1,6-525МГц делают приборы Nissen весьма ценным подспорьем там где необходима не комплексная характеристика линии а быстрота и точность измерения.
NISSEI TX-502
Характерным представителем серии измерителей Nissen может послужить Nissen TX-502. Измерение прямых и обратных потерь, измерение КСВ, стрелочная панель с явно видимой градуировкой. Максимум функционала при лаконичном исполнении. И при этом в процессе настройки антенн этого зачастую вполне хватает для быстрого и оперативного развертывания системы связи и наладки канала.