Домой / Обзоры / Где должны стоять разрядники. Назначение, конструкции разрядников, опн. Принцип работы разрядника

Где должны стоять разрядники. Назначение, конструкции разрядников, опн. Принцип работы разрядника

В процессе эксплуатации, высоковольтное оборудование может часто подвергаться перенапряжениям, возникновение которых обусловлено как внешними, так и внутренними факторами. К внешним относятся перенапряжения вызванные грозовыми разрядами, попадающими в конструкции электроустановок.

Внутренние перенапряжения, вызванные включениями или отключениями коммутационных аппаратов в распределительных устройствах энергосистем по другому называют коммутационными. Какой бы характер не носило перенапряжение, оно имеет отрицательное влияние на изоляционные характеристики оборудования, и надежность энергосистемы в целом.

Грозовые перенапряжения имеют длительность фронта импульса от 7 до 9 мкс с длительностью импульса до 22 мкс, коммутационные - длительность фронта импульса 30-100 мкс, с длительностью импульса до 200 мкс.

Как видно, эти два вида одного и того же явления имеют разные характеристики, следовательно, на изоляцию оборудования воздействую по-разному. Согласно регламентирующим документам, все электроустановки должны иметь защиту от перенапряжений.

В распределительных устройствах подстанций, для защиты высоковольтного электрооборудования применяют вентильные разрядники. Название вентильных они получили, за свое свойство быть «запертыми» при номинальных уровнях напряжений, и «открываться» при перенапряжении.

Таким образом, для защиты используется их способность «открываться» и «закрываться» подобно вентилю. Разрядники постоянно находятся в работе, они жестко присоединены к ошиновке защищаемого оборудования.

Находясь постоянно под номинальным напряжением, эти устройства имеют бесконечно большое сопротивление, и ток утечки измеряется в mA.

Если к разряднику приложить более высокое напряжение, которое может возникнуть в результате попадания грозы или включения/отключения длинной холостой линии, сопротивление становится ничтожно малым, и разрядник «открывается».

При этом он пропускает ток промышленной частоты и импульсный ток, возникший при перенапряжении, в землю, уберегая защищаемое оборудование, от импульса высокого напряжения. Именно поэтому, очень важно, чтобы разрядник имел надежное заземление и был установлен как можно ближе к защищаемому оборудованию. Это обусловлено уменьшением потенциального участка, куда могла бы попасть молния.

Разрядники, должны быть установлены без каких- либо коммутационных аппаратов. Это обусловлено тем, что излишние контактные соединения, могут нарушить электрическую связь разрядника и защищаемого оборудования и привести к его повреждению.


Типы разрядников . Для всех видов вентильных разрядников характерной особенностью является наличие искровых промежутков в совокупности с рабочими и шунтирующими резисторами. Все это помещается в фарфоровую рубашку и герметично заделывается во фланцевых соединениях с помощью армировочных растворов.

В процессе эксплуатации армировка должна быть постоянно покрыта эмалью или влагостойкой краской. Искровые промежутки изготавливаются из миканитовых шайб, их количество и соотношение с сопротивлением рабочего резистора определяется классом напряжения разрядника.

Рабочий резистор имеет нелинейное сопротивление, то есть его электрическое сопротивление резко уменьшается при поднятии напряжения до пробивного. В качестве основного материала рабочего сопротивления применяют вилитовые диски (в некоторых случаях - тервитовые). Данные материалы гигроскопичны; отсюда и вытекают жесткие требования к герметичности фарфоровой покрышки и армировочных швов.

Вентильные разрядники типа РВП , РВО , РВС , РВЭ , РВН состоят из последовательно включенных искровых промежутков и рабочего сопротивления. Способность таких разрядников гасить импульсный ток разряда ограничена способностью простых искровых промежутков гасить дугу. Поэтому, их применяют только для защиты от грозовых перенапряжений, длительность импульса которых меньше, чем у коммутационных.

Разрядники типа РВМ , РВМГ и РВРД отличаются от вышеперечисленных, магнитным гашением дуги. То есть дуга в искровом промежутке, под действием магнитного поля постоянных магнитов растягивается и гасится.

Кроме этого, в разрядниках РВМГ параллельно с искровым промежутком подключены резисторы, “берущих” на себя часть разряда. Такие разрядники защищают не только от грозовых, но и от кратковременных коммутационных перенапряжений.

В случаях, когда требуется защита от перенапряжений, вызванных коммутацией электрооборудования, например одностороннее отключение холостой линии напряжением 330 кВ и выше, применяют комбинированные магнитно-вентильные разрядники типа РВМК. Они состоят из нескольких модулей: основного, вентильного и искрового элемента.

Основной элемент состоит из искровых промежутков с и рабочих резисторов. Искровой элемент состоит из искровых промежутков, вентильный элемент только из резисторов. Разрядник РВМК-750 (1150) состоит из модулей. Каждый модуль содержит грозовую и коммутационную часть, блок шунтирующих сопротивлений и конденсаторов.

До настоящего момента на подстанциях применялись вентильные разрядники типа РВС , РВП , РВО , РВМГ , РВМК . Данные типы объединяет то, что в качестве нелинейного сопротивления в них использовали вилит и искровые промежутки.

В последнее время, их применение сокращается. На смену оборудованию, прослужившему более двух десятков лет на подстанциях отечественной энергосистемы, приходит новое, более совершенное оборудование – ограничители перенапряжений.


Применение молниеотводов полностью не исключает поражения молнией электроустановок, особенно линий электропередачи, так как вероятность прорыва молнии для воздушных линий электропередачи может быть сравнительно высока, и, кроме того, они часто выполняются вообще без тросовой защиты. Волны перенапряжений, возникающие на линиях при ударах молнии, доходят до подстанций (поэтому их и называют набегающими волнами) и могут представлять опасность для изоляции установленного там оборудования.

Для предупреждения повреждения какой-либо изоляционной конструкции параллельно ей включают искровой промежуток , вольт-секундная (характеристика которого должна лежать ниже вольт-секундной характеристики защищаемой изоляции. При соблюдении этого условия падение волны перенапряжения вызовет во всех случаях пробой искрового промежутка с последующим резким падением («срезом») напряжения на искровой промежуток и защищаемой изоляции. Вслед за импульсным током через искровой промежуток начнет протекать ток, обусловленный напряжением промышленной частоты электроустановки, - сопровождающий ток.

В установках с заземленной нейтралью или при пробое искрового промежутка в двух-трех фазах дуга сопровождающего тока самостоятельно может и не погаснуть, и импульсный пробой в этом случае перейдет в устойчивое короткое замыкание, что приведет к отключению установки. Поэтому, чтобы избежать такого отключения установки, необходимо обеспечить гашение дуги сопровождающего тока через искровой промежуток.

Устройства, которые обеспечивают не только защиту изоляции от перенапряжений, но и гашение дуги сопровождающего тока в течение времени, меньшего, чем время действия релейной защиты, называют защитными разрядниками в отличие от обычных искровых промежутков, которые принято называть защитными промежутками (ПЗ).

Трубчатые разрядники вместе с являются основными типами разрядников. Они отличаются принципом гашения дуги сопровождающего тока. В трубчатых разрядниках гашение дуги осуществляется за счет создания интенсивного продольного дутья, а в вентильных дуга гаснет благодаря уменьшению сопровождающего тока с помощью дополнительного сопротивления, включенного последовательно с искровым промежутком.

Трубчатый разрядник (рис. 1, а) представляет трубку 2 из изолирующего газогснерирующего материала, внутри которой имеется дугогасящий нерегулируемый промежуток S1, образованный стержневым электродом 3 и фланцем 4. Разрядник отделяется от рабочего напряжения внешним искровым промежутком так как трубка 2 не рассчитана на длительное нахождение под напряжением из-за разложения газогенерирующего материала под действием токов утечки. Второй фланец 1 разрядника заземляется.


Рис. 1. Трубчатый разрядник: а - устройство и схема включения, б - условное обозначение на схемах, в - напряжение на разряднике, г -схема замещения.

При перенапряжении в сети (рис. 1, в) оба искровых промежутка пробиваются и волна перенапряжений (кривая 1) срезается. По пути, созданному импульсным разрядом, начинает протекать сопровождающий ток, и искровой разряд переходит в дуговой. Под действием высокой температуры канала дуги сопровождающего тока материал трубки разлагается с выделением большого количества газов, давление в ней резко возрастает (до десятков атмосфер) и газы с силой вырываются через отверстие фланца 4, создавая интенсивное продольное дутье. В результате дуга гаснет при первом же прохождении тока через нуль.

При срабатывании разрядника из него выбрасываются раскаленные ионизированные газы в виде факела 5 длиной 1,5 - 3,5 м и шириной 1 - 2,5 м (в зависимости от номинального напряжения разрядника) и раздается звук, напоминающий выстрел. Поэтому для предупреждения междуфазовых замыканий при монтаже разрядников нужно следить, чтобы в зону выхлопа не попали токоведущие части соседних фаз. Напряжение срабатывания разрядников можно регулировать, изменяя расстояние внешнего искрового промежутка но их нельзя снижать ниже определенного минимума, так как это вызывает слишком частые срабатывания разрядников и их повышенный износ.

Так как электрическое поле стержневых электродов трубчатого разрядника резконеоднородно, то его вольт-секундная характеристика имеет падающий характер на участке до 6 - 8 мкс, что плохо согласуется с пологими вольт-секундными характеристиками трансформаторов и электрических машин. Для успешного гашения дуги необходима определенная интенсивность газообразования, поэтому существует нижний предел отключаемых токов, при котором разрядник еще может погасить дугу в течение 1 - 2 полупериодов.

Верхний предел отключаемых токов также ограничивается, так как слишком интенсивное газообразование может привести к разрушению разрядника (разрыву трубки или срыву фланцев).

Диапазон отключаемых токов указывается в обозначении типа разрядника, например РТВ 35/(0,5 - 2,5) означает трубчатый разрядник 0,5 - 2,5 винипластовый на 35 кВ с пределами отключаемых токов 0,5 - 2,5 кА.

При уменьшении длины дугогасящего промежутка и увеличении его диаметра оба предела отключаемых токов разрядника смещаются в сторону больших значений.

Так как работа разрядника сопровождается выгоранием части материала дугогасящей трубки, то после 8 - 10 срабатываний, когда диаметр возрастает на 20 - 25 % по сравнению с первоначальным, разрядник становится непригодным (так как изменяются пределы отключаемых им токов) и подлежит замене.

Для учета числа срабатываний трубчатые разрядники снабжаются указателем срабатывания в виде металлической ленты 6 (см. рис. 1, а), разгибаемой выбрасываемыми разрядником газами. В настоящее время промышленностью выпускаются трубчатые разрядники типа РТФ , в которых газ генерируется фибровой трубкой, и типа РТВ с трубкой из винипласта.

Вследствие малой механической прочности фибры она заключается в толстую трубку из бакелизированой бумаги, которая для уменьшения ее гигроскопичности покрывается влагостойким лаком (обычно перхлорвиниловой эмалью), хорошо выдерживающим атмосферные воздействия летнего и зимнего периодов. Особенностью разрядников типа РТФ является наличие камеры у закрытого конца трубки, которая усиливает продольное дутье при прохождении тока через нулевое значение и способствует тем самым гашению дуги.

В разрядниках РТВ газ генерируется трубкой из винипласта, который обладает более высокой газогенерирующей способностью и изолирующими свойствами, хорошо сохраняющимися даже при работе на открытом воздухе при любой погоде. Разрядники РТВ имеют более простую конструкцию (у них нет внутренней камеры, не требуют лакировки) и более высокие верхние пределы отключаемых токов (15 кА вместо 7-10 кА для разрядников РТФ).

Рис. 2. Трубчатый разрядник РТВ-20-2/10

Для работы в сетях с очень большими отключаемыми токами (до 30 кА) выпускаются усиленные разрядники типа РТВУ, повышенная механическая прочность которых достигается путем обмотки винипластовой трубки слоями стеклоленты, пропитанной атмосферостойким эпоксидным компаундом.

Импульсная пропускная способность трубчатых разрядников, которые пропускают через себя практически весь ток молнии при ударе ее в линию, достаточно высока и составляет 30-70 кА.

Выбор трубчатых разрядников производится по номинальному напряжению сети и пределам токов короткого замыкания сети в точке их установки. Максимальный ток к. з. рассчитывают при условии включения всех элементов сети (линии, трансформаторы, генераторы) с учетом апериодической составляющей тока к. з., минимальный ток - при схеме сети с частично выключенными элементами (например, для капитального ремонта) и без учета апериодической составляющей. Найденные пределы тока к. з. должны укладываться в пределы отключаемых токов трубчатого разрядника.

Трубчатые разрядники выпускаются на напряжения от 3 до 220 кВ, отключаемые токи лежат в пределах от 0,2 - 7 и 1,5 - 30 кА при напряжении 3 - 35 кВ до 0,4 - 7 и 2,2 - 30 кА при напряжении 110 кВ. Разрядник на 220 кВ состоит из двух трубчатых разрядников на 110 кВ, соединенных между собой стальной обоймой с выхлопными патрубками.

Основными недостатками трубчатых разрядников являются наличие зоны выхлопа, крутой срез волны перенапряжения, замыкание (хотя и кратковременное) линий на землю и особенно крутая вольт-секундная характеристика, исключающая возможность широкого применения трубчатых разрядников в качестве аппарата защиты подстанционного оборудования. Недостатком трубчатых разрядников является также наличие предельных отключаемых токов, что осложняет их производство и эксплуатацию.

Благодаря своей простоте и низкой стоимости трубчатые разрядники широко применяются в качестве вспомогательных средств защиты подстанций, для защиты маломощных и малоответственных подстанций, а также отдельных участков линий.

В настоящее время трубчатые и вентильные разрядники постепенно заменяют на нелинейные ограничители напряжений (ОПН) . Они представляют собой последовательно соединенные металлооксидные варисторы (нелинейные резисторы) без искровых промежутков, заключенные в фарфоровый или полимерный корпус.

Назначение разрядников

Газонаполненные разрядники - это приборы с двумя или тремя электродами, предназначенные для защиты электронной аппаратуры от случайных перенапряжений или для формирования мощных электрических импульсов в микро- и наносекундном диапазонах. Основная особенность вольт-амперной характеристики двухэлектродного защитного разрядника - наличие порогового напряжения, ниже которого разрядник выступает как изолятор, а выше - как низкоомный проводник.

Коммутационные разрядники до перехода в проводящее состояние эквивалентны разомкнутому ключу. В режим низкоомного проводника они переходят при увеличении напряжения выше порогового значения или при поступлении импульса напряжения на управляющий электрод (в управляемых разрядниках). Из проводящего состояния в непроводящее защитные и коммутационные разрядники возвращаются только после снижения напряжения между основными электродами до определенного значения.

В проводящем состоянии из-за малого собственного сопротивления разрядники не определяют величину тока. Обычно она ограничена активным (или индуктивным) сопротивлением элементов цепи. Характерные параметры разрядников: пороговое напряжение - от 70 В до 300 кВ, допустимый ток - до 150 кА. Для некоторых типов разрядников (защита цепей, находящихся под сравнительно высоким рабочим напряжением) в качестве параметров указывается напряжение, при котором разрядник возвращается в непроводящее состояние. Характерные значения напряжения - от 50 В до 8 кВ. Важными параметрами коммутирующих разрядников являются максимально допустимая частота следования импульсов (10 - 100 Гц) и срок службы, который характеризуют гарантированным числом коммутаций (106 - 107) или зарядом, коммутируемым за весь период работы (103 - 104 Кл - «суммарный заряд»).

Устройство и принцип действия

Конструкция типичного разрядника представляет собой два плоских дисковых электрода, разделенных диэлектрической вакуумной оболочкой из керамики (рис. 1). Приборы обычно наполняются инертными газами и их смесями до давления от 102 до 106 Па. Характерные значения параметров газоразрядного промежутка: расстояние - до 1 см, площадь - порядка 1 см Минимальные габариты 8,26 мм (диаметр и высота разрядников «кнопочной» конструкции), максимальные - 120220 мм. В проводящее состояние разрядники переходят в результате возникновения газового разряда. В зависимости от назначения прибора разряд может быть тлеющим (на миллиамперный диапазон токов), дуговым (амперы и килоамперы) или искровым (килоамперы).

Рис. 1.

Основные физические процессы в тлеющем разряде: развитие электронных лавин, выход электронов из катода под действием ионов и фотонов, перераспределение потенциала в промежутке за счет ионного пространственного заряда, приводящее к формированию узкой прикатодной области с большой напряженностью поля. Характерные величины напряжения горения разряда - сотни вольт.

В дуговом разряде определяющую роль играет термоэмиссия электронов с поверхности катода, разогретого ионной бомбардировкой. Дуговому разряду в сравнении с тлеющим присущи более низкие значения напряжения горения - десятки вольт. Для разрядников характерна «неустановившаяся форма дугового разряда», при которой до высокой температуры быстро разогревается не весь катод, а лишь его микроучасток, в пределах которого возможны плавление и испарение вещества.

Разряд в таких условиях может развиваться в расширяющемся облаке пара материала катода. Для обеспечения необходимой долговечности разрядников в таких случаях особое внимание уделяется выбору катодного материала. Основные требования к нему - низкая работа выхода электронов и сравнительно малая теплота испарения. Одним из распространенных материалов является алюмосиликат цезия, заполняющий поры прессованной губки из никелевого порошка. В сильноточных (до 150 кА) коммутационных разрядниках катод выполняется в виде медной пленки, нанесенной на подслой молибдена.

Искровой разряд развивается при очень высокой интенсивности размножения электронов в лавине, с существенной генерацией фотонов, способных ионизировать молекулы газа. Разряд формируется в виде «стримеров», визуально наблюдаемых как искры. Развитию стримеров физически соответствует быстрое перемещение фронта ионизированного газа, обусловленное тем, что после ухода на анод части электронов лавины положительный пространственный заряд «втягивает» в основной разрядный канал «дочерние» электронные лавины, зарождающиеся перед фронтом в результате фотоионизации газовых молекул.

Достоинства разрядников: широкий диапазон значений рабочих напряжений и токов, устойчивость к токовым перегрузкам, простота конструкции и технологии изготовления, способность нормально функционировать в условиях радиации и высокой (до 300 оС) температуры окружающей среды. Достоинства определяют широкое применение разрядников: в настоящее время выпускается около 50 типов приборов. Обозначение типов обычно включает букву «Р» и номер разработки, например неуправляемый защитный разрядник Р-150. В обозначении некоторых типов указываются две буквы и номер. Например, РУ-73 - управляемый трехэлектродный разрядник; РО-49 - разрядник обостритель для рентгеновских приборов; РК-160 - коммутирующий разрядник.

Устройство и принцип действия разрядников

1.Общие сведения

Трубчатые разрядники

Вентильные разрядники

Разрядники постоянного тока

Ограничители перенапряжений

Длинно-искровые разрядники

1.Общие сведения

При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.

Рис.1. Согласование характеристик разрядника и защищаемого оборудования

перенапряжение разрядник электрическая установка

Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис.1) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током I, проходящим через разрядник, сопротивлениями разрядника и заземления Rз. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т.е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.

Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежуток оказывается ионизированным и легко пробивается номинальным фазным напряжением. Возникает КЗ на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пределах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в возможно малое время (около полупериода промышленной частоты).

К разрядникам предъявляются следующие требования.

Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и должна быть пологой.

Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.

Остающееся напряжение на разряднике, характеризующее его ограничивающую способность, не должно достигать опасных для изоляции оборудования значений.

Сопровождающий ток частотой 50 Гц должен отключаться за минимальное время.

Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Рис.2. Обозначение разрядников

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727-68.

Общее обозначение разрядника

Разрядник трубчатый

Разрядник вентильный и магнитовентильный

Промышленность выпускает вентильные разрядники серий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.

Разрядник РН - низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудования напряжением 0,5 кВ.

Разрядник РВН - вентильный, для защиты от атмосферных перенапряжений изоляции электрооборудования.

Разрядник РНК предназначен для защиты устройств контроля изоляции вводов высокого напряжения трансформаторов.

Разрядник РВРД - вентильный, с растягивающейся дугой, предназначен для защиты изоляции электрических машин от атмосферных и кратковременных внутренних перенапряжений.

Разрядник РМВУ - вентильный, магнитный, униполярный, предназначен для защиты от перенапряжений изоляции тягового электрооборудования в установках постоянного тока.

Разрядник РА - серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и компенсаторов) с номинальным током возбуждения до 3000 А.

Разрядник РВО - вентильный облегченной конструкции; разрядник РВС - вентильный станционный; разрядник РВТ - вентильный, токоограничивающий; разрядник PC - вентильный для защиты электроустановок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК - вентильные с магнитным гашением дуги, модификации Г и А, комбинированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной способности разрядников) изоляции оборудования электрических станций и подстанций переменного тока номинальным напряжением 15-500 кВ.

Трубчатые разрядники РТВ и РТФ - винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции линий электропередачи и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.

Трубчатые разрядники

Рис.3. Трубчатый разрядник

Трубчатый разрядник (рис.3) при нормальной работе установки отделен от линии воздушным промежутком S2. При появлении перенапряжения пробиваются промежутки S1 и S2 и импульсный ток отводится в землю. После прохождения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В узком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в промежутке S1 между электродами 2 и 3 загорается дуга. Внутри обоймы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3.При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка S1 газами, выходящими из разрядника. В заземленном электроде 4 имеется буферный объем 5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.

Предельный отключаемый ток промышленной частоты определяется механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотканью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц определяется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значения тока КЗ в месте установки разрядника.

Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.

Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При размещении разрядников необходимо, чтобы в эту зону не попадали элементы, находящиеся под высоким потенциалом.

Защитная характеристика разрядника в значительной степени зависит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать равномерным с целью более полного использования изоляционных материалов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зависящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесными изоляторами). При выборе трубчатого разрядника необходимо рассчитать возможный минимальный и максимальный ток КЗ в месте установки и по этим токам выбрать соответствующий разрядник. Номинальное напряжение разрядника должно соответствовать номинальному напряжению сети. Размеры внутреннего S1 и внешнего S2 промежутков выбираются по специальным таблицам.

Вентильные разрядники

Рис. 4. Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)

Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис.4,а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7.

Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис.4,б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.

После пробоя искровых промежутков напряжение на разряднике

Если сопротивление разрядника Rр определяемое рабочими резисторами, линейное, то напряжение на разряднике растет пропорционально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения Uр сопротивление Rр выполняется нелинейным и с ростом тока уменьшается. Зависимость между напряжением и током в этом случае выражается как

где А -постоянная, характеризующая напряжение на сопротивлении Rp при токе 1 А; α -показатель нелинейности. Случай, когда α=0, является идеальным, так как напряжение Up не зависит от тока.

Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения.

Рис.5. Вольт-амперная характеристика вилитового резистора

В качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности α=0,13-0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис.5,а. При небольших токах сопротивление Rp велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение Uр почти не растет (область В).

Основу вилита составляют зерна карборунда SiC с удельным сопротивлением около 10-2 Ом·м. На поверхности карборундовых зерен создается пленка оксида кремния SiO2 толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104-106 Ом·м. При увеличении приложенного напряжения сопротивление пленки резко уменьшается, сопротивление определяется в основном зернами карборунда и падение напряжения ограничивается..

Рабочие резисторы изготавливаются в виде дисков диаметром 0,1-0,15 м и высотой (20-60)·10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой.

Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются.

Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение

Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.

При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.

Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.

После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз φ между током и напряжением (φ->0). На рис.5,б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого индуктивным сопротивлением Х; 3 -кривая тока, определяемого рабочим резистором (Rр>>X). Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств.

Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5-1)·10-3 м.

Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.

Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80-100 А при действующем значении напряжения 1-1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80-100 А. При этом гашение дуги обеспечивается за один по л у пери од.

Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.

Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности α=0,15- 0,29.

Рис.6. Комбинированный разрядник с тервитовыми резисторами

Тервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).

Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.

С помощью искровых промежутков, показанных на рис. 4,б невозможно отключение токов 200-250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.

Основные характеристики вентильного разрядника:

Напряжение гашения Uгаш - наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапряжение, то напряжение гашения, прикладываемое к разряднику, определяется уравнением

где Кз - коэффициент, зависящий от способа заземления нейтрали; Uном - номинальное линейное напряжение сети. Для установок с заземленной нейтралью Кз=0,8, для изолированной нейтрали Кз = l,l.

Ток гашения Iгаш, под которым понимается сопровождающий ток, соответствующий напряжению гашения Uгаш.

Дугогасящее действие искрового промежутка характеризуется коэффициентом

где Uпр - напряжение пробоя частотой 50 Гц искрового промежутка.

Защитное действие нелинейного резистора характеризуется коэффициентом защиты

где Uост - напряжение на разряднике при импульсном токе 5-14 кА. Это напряжение должно быть на 20-25 % ниже разрядного напряжения защищаемой изоляции.

4.Разрядники постоянного тока

Рис.7. Разрядник постоянного тока

Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20-30 В.

Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродинамическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного охлаждения дуги ее сопротивление увеличивается и ток прекращается.

Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис.7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с двумя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков достигается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт снизу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплотнением 5.

Ограничители перенапряжений

На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110-500 кВ.

ОПН представляет собой нелинейный резистор с высоким коэффициентом нелинейности α=0,04 (против 0,1 -0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциальным выводом и землей) без разрядных промежутков. Благодаря высокой нелинейности при номинальном фазном напряжении через ОПН протекает ничтожный ток 1 мА. При увеличении напряжения сопротивление ОПН резко уменьшается, ток, протекающий через него, растет. При напряжении 2,2Uф через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.

Рис.8. Вольт-амперная характеристика ограничителя ОПН-500

ОПН ограничивают коммутационные перенапряжения до уровня 1,8Uф и атмосферные перенапряжения до (2-2,4)Uф. Из вольт-амперной характеристики ОПН-500 (рис.8) видно, что при снижении перенапряжений с 2Uф до Uф ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Высокая нелинейность резисторов ОПН (для области больших токов α≈0,04) позволяет значительно снизить перенапряжения и уменьшить габариты оборудования, особенно при напряжении 750 и 1150 кВ.Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напряжения.

Длинно-искровые разрядники

Авторы идеи РДИ Подпоркин Георгий Викторович, доктор технических наук, профессор Политехнического Университета Санкт - Петербурга, Senior Member IEEE, и Сиваев Александр Дмитриевич, кандидат технических наук, начали первые эксперименты по разработке длинно - искровых разрядников ещё в 1989 году, а в 1992 было получено авторское свидетельство.

Рис.9. Схема длинно-искрового разрядника

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

Разрядник длинно-искровой петлевого типа (РДИП)

РДИП-10 предназначен для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и рассчитан для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Разрядник длинно-искровой модульный (РДИМ)

РДИМ предназначен для защиты от прямых ударов молнии и индуктированных грозовых перенапряжений воздушных линий электропередачи (ВЛ) и подходов к подстанциям напряжением 6, 10 кВ трехфазного переменного тока с неизолированными и защищенными проводами.

РДИМ обладает наилучшими вольт-секундными характеристиками, именно поэтому его целесообразно применять для защиты участков линии, подверженных прямым ударам молнии, а также для защиты подходов к подстанциям ВЛ.

РДИМ состоит из двух отрезков кабеля с корделем, выполненным из резистивного материала. Отрезки кабеля сложены между собой так, что образуются три разрядных модуля 1, 2, 3.

Разрядник – это аппарат, предназначенный для защиты электроустановки от атмосферных перенапряжений. Перенапряжения в электрических установках могут вызывать пробой изоляции с последующим коротким замыканием и выходом высоковольтной аппаратуры из строя.

Фактически разрядник это самое слабое место сети по изоляции, через которое происходит разряд на землю при перенапряжениях, после чего восстанавливается нормальный режим работы сети. Вместе с тем, разрядник должен работать так, чтобы после пробоя его разрядного промежутка не произошло короткого замыкания в цепи.

ПУЭ требует установки разрядников для защиты воздушных линий с воздушными вводами.

Воздушные линии защищают от перенапряжений трубчатыми разрядниками.

Разрядник типа РТ представляет собой трубку из оргстекла или фибры, внутри которой проходит металлический стержень с воздушным искровым промежутком. При перенапряжении, превышающем установленный уровень, искровой промежуток пробивается и образуется электрическая дуга. В результате высокой температуры из стенок трубки выделяются газы, вырывающиеся под большим давлением наружу и способствующие деионизации воздушного пространства в разряднике и гашению дуги. Для правильного выбора разрядников нужно иметь данные о токах короткого замыкания в местах их установки, так как при малой величине тока короткого замыкания количество выделяемых газов может оказаться недостаточным для быстрого гашения электрической дуги, следствием чего станет отключение сети максимальной защитой. И, наоборот, при величине тока короткого замыкания, превышающего максимально допустимый, для данного типа устройства, в результате бурного газообразования и чрезмерного повышения давления устройство может быть разрушено.

Поэтому в каталогах приводят минимальные и максимальные величины тока короткого замыкания для каждого типа трубчатого разрядника.

Например, — это разрядник трубчатый на напряжение 10 кВ для диапазона токов короткого замыкания от 0,5 до 7 кА.

Вилитовые разрядники (рисунок ниже) предназначаются для защиты от перенапряжений аппаратуры электрических подстанций и станций.

В этих аппаратах, называемых еще вентильными, то есть запирающими, используется свойство керамического материала вилита, из которого они изготовлены, снижать свое сопротивление при превышении напряжения сверх некоторого предела. Таким образом, при перенапряжении разрядник пробивается, а по мере снижения потенциала его диэлектрическая прочность восстанавливается, и протекание электрического тока на землю прекращается.