Домой / Офис / Натуральный логарифм и число е. Функция: область определения и область значений функций Выражения через гиперболические функции

Натуральный логарифм и число е. Функция: область определения и область значений функций Выражения через гиперболические функции

Хотя эта связь на первый взгляд эта связь кажется совсем неочевидной (одно дело, казалось бы, научная математика, и совсем другое - экономика и финансы), но стоит изучить историю "открытия" этого числа, всё становится очевидным. В самом деле, как бы ни делили науки на разные вроде как несвязанные меж собой ветви, но общая парадигма всё равно будет единой (в частности, обществу потребления - "потребительская" же и математика).

Для начала определение. e - основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».

Поскольку функция экспоненты e^x интегрируется и дифференцируется «в саму себя», логарифмы именно по основанию e принимаются как натуральные (хотя само название "натуральности" должно бы быть под большим сомнением, ведь вся математика по сути устроена на искусственных придуманных, оторванных от природы выдуманных началах, а вовсе не на естественных).

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как Непер не использовал непосредственно само число.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из КИНЕМАТИЧЕСКИХ соображений, сама же константа не присутствует.

Саму же константу впервые вычислил швейцарский математик Бернулли (по официальной версии в 1690 году) в ходе решения задачи о предельной величине ПРОЦЕНТНОГО ДОХОДА. Он обнаружил, что если исходная сумма $1 (валюта совершенно неважна) и начисляется 100 % годовых один раз в конце года, то итоговая сумма будет $2. Но если те же самые проценты начислять два раза в год, то $1 умножается на 1.5 дважды, получая $1.00×1.5² = $2.25. Начисления процентов раз в квартал приводят к $1.00×1.254 = $2.44140625, и так далее. Бернулли показал, что если частоту начисления процентов БЕСКОНЕЧНО УВЕЛИЧИВАТЬ, то процентный доход в случае сложного процента имеет предел - и этот предел равен 2,71828…

$1.00×(1+1/12)12 = $2.613035…

$1.00×(1+1/365)365 = $2.714568… - в пределе число е

Таким образом, число e на самом деле исторически означает максимально возможную ГОДОВУЮ ПРИБЫЛЬ при 100 % годовых и максимальной частоте капитализации процентов. И при чём здесь законы Вселенной ? Число е - один из важных кирпичиков в фундаменте денежной экономики ссудного процента в обществе потребления, под которую с самого начала, даже на мыслительном философском уровне, подгонялась и затачивалась несколько столетий назад вся используемая сегодня математика.

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы.

Букву e начал использовать Эйлер в 1727 году, впервые она встречается в письме Эйлера немецкому математику Гольдбаху от 25 ноября 1731 года, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически», 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Также примечательно, что буква e является первой в фамилии Эйлер (Euler).

Но в любом случае, говорить о том, что число е каким-то образом относится к универсальным законам Вселенной и природы, просто абсурдно. Это число самой концепцией изначально привязывалось к кредитно-финансовой денежной системе, и в частности через это число (но не только) идеология кредитно-финансовой системы косвенно влияла и на формирование и развитие всей остальной математики, а через неё и всех остальных наук (ведь все без исключения науки что-то считают, используя при этом правила и подходы математики). Число e играет важную роль в дифференциальном и интегральном исчислении, которое через неё фактически тоже связано с идеологией и философией максимизации процентного дохода (можно даже сказать, связано подсознательно). Как связан и натуральный логарифм. Установление е в качестве константы (вместе со всем прочим) привело к образованию неявных связей в мышлении, в соответствии с которыми вся существующая математика просто не может существовать в отрыве от денежной системы! И в этом свете совершенно неудивительно, что древние славяне (да и не только они) прекрасно обходились без констант, иррациональных и трансцендентных чисел да и без чисел и цифр вообще (в качестве чисел в древности выступали буквы), другая логика, другое мышление в системе в отсутствии денег (а значит и всего, что с ними связано) делает всё вышеперечисленное попросту ненужным.

ОПРЕДЕЛЕНИЕ

Число — иррациональная и трансцендентная математическая константа, называемая числом Эйлера или числом Непера , являющаяся основанием натурального логарифма.

Негласно константа присутствует в работе «Описание удивительной таблицы логарифмов» шотландского математика Джона Непера (1550-1617) (а точнее в приложении к переводу этой работы, который был опубликован в 1618 г.). Первые упоминания про эту константу имеются в письмах саксонского философа, логика, математика, механика, физика, юриста, историка, дипломата, изобретателя и языковеда Готфрида Вильгельма Лейбница (1646-1716) к нидерландскому механику, физику, математику, астроному и изобретателю Христиану Гюйнгенсу ван Зёйлихему (1629-1695) в 1690-91 гг. Там она обозначалась буквой . Традиционное обозначение в 1727 г. начал использовать швейцарский, немецкий, российский математик и механик Леонард Эйлер (1707-1783); впервые он употребил ее в своем письме к немецкому математику Кристиану Гольдбаху (1690-1764) в 1731 г. Первой публикацией с этой буквой была работа Л. Эйлера «Механика, или Наука о движении, изложенная аналитически» (1736). Сама же константа впервые была вычислена швейцарским математиком Якобом Бернулли (1655-1705) в ходе решения задачи о предельной величине процентного дохода:

Число играет большую роль в различных разделах математики, а особенно в дифференциальном и интегральном исчислении. Трансцендентность числа Эйлера была доказана французским математиком Шарлем Эрмитом (1822-1901) только в 1873 г.

Задания числа e

1) Через предел:

2,7182818284590452353602874713527… Шестнадцатеричная 2,B7E151628AED2A6A… Шестидесятеричная 2; 43 05 48 52 29 48 35 … Рациональные приближения 8 / 3 ; 11 / 4 ; 19 / 7 ; 87 / 32 ; 106 / 39 ; 193 / 71 ; 1264 / 465 ; 2721 / 1001 ; 23225 / 8544

(перечислено в порядке увеличения точности)

Непрерывная дробь

Способы определения

Число e может быть определено несколькими способами.

  • Через предел: e = lim x → ∞ (1 + 1 x) x {\displaystyle e=\lim _{x\to \infty }\left(1+{\frac {1}{x}}\right)^{x}} (второй замечательный предел). e = lim n → ∞ n n ! n {\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}} (это следует из формулы Муавра - Стирлинга).
  • Как сумма ряда : e = ∑ n = 0 ∞ 1 n ! {\displaystyle e=\sum _{n=0}^{\infty }{\frac {1}{n!}}} или 1 e = ∑ n = 2 ∞ (− 1) n n ! {\displaystyle {\frac {1}{e}}=\sum _{n=2}^{\infty }{\frac {(-1)^{n}}{n!}}} .
  • Как единственное число a {\displaystyle a} , для которого выполняется ∫ 1 a d x x = 1. {\displaystyle \int \limits _{1}^{a}{\frac {dx}{x}}=1.}
  • Как единственное положительное число a {\displaystyle a} , для которого верно d d x a x = a x . {\displaystyle {\frac {d}{dx}}a^{x}=a^{x}.}

Свойства

  • Число e {\displaystyle e} трансцендентно . Впервые это было доказано в 1873 году Шарлем Эрмитом . Трансцендентность числа e {\displaystyle e} следует из теоремы Линдемана .
  • Предполагается, что e {\displaystyle e} - нормальное число , то есть частота появления разных цифр в его записи одинакова. В настоящее время (2017) эта гипотеза не доказана.
  • Число e является вычислимым (а значит, и арифметическим) числом.
  • e i x = cos ⁡ (x) + i ⋅ sin ⁡ (x) {\displaystyle e^{ix}=\cos(x)+i\cdot \sin(x)} , см. формула Эйлера , в частности
  • Формула, связывающая числа e {\displaystyle e} и π {\displaystyle \pi } , т. н. интеграл Пуассона или интеграл Гаусса ∫ − ∞ ∞ e − x 2 d x = π {\displaystyle \int \limits _{-\infty }^{\infty }\ e^{-x^{2}}{dx}={\sqrt {\pi }}}
  • Для любого комплексного числа z верны следующие равенства: e z = ∑ n = 0 ∞ 1 n ! z n = lim n → ∞ (1 + z n) n . {\displaystyle e^{z}=\sum _{n=0}^{\infty }{\frac {1}{n!}}z^{n}=\lim _{n\to \infty }\left(1+{\frac {z}{n}}\right)^{n}.}
  • Число e разлагается в бесконечную цепную дробь следующим образом (простое доказательство этого разложения, связанное с аппроксимациями Паде, приведено в ): e = [ 2 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , 1 , 1 , 10 , 1 , … ] {\displaystyle e=} , то есть e = 2 + 1 1 + 1 2 + 1 1 + 1 1 + 1 4 + 1 1 + 1 1 + 1 6 + 1 1 + 1 1 + 1 8 + 1 1 + 1 1 + 1 10 + 1 1 + … {\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{4+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{6+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{8+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{10+{\cfrac {1}{1+\ldots }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
  • Или эквивалентным ему: e = 2 + 1 1 + 1 2 + 2 3 + 3 4 + 4 … {\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {2}{3+{\cfrac {3}{4+{\cfrac {4}{\ldots }}}}}}}}}}}
  • Для быстрого вычисления большого числа знаков удобнее использовать другое разложение: e + 1 e − 1 = 2 + 1 6 + 1 10 + 1 14 + 1 … {\displaystyle {\frac {e+1}{e-1}}=2+{\cfrac {1}{6+{\cfrac {1}{10+{\cfrac {1}{14+{\cfrac {1}{\ldots }}}}}}}}}
  • e = lim n → ∞ n n ! n . {\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}
  • Представление Каталана : e = 2 ⋅ 4 3 ⋅ 6 ⋅ 8 5 ⋅ 7 4 ⋅ 10 ⋅ 12 ⋅ 14 ⋅ 16 9 ⋅ 11 ⋅ 13 ⋅ 15 8 ⋅ 18 ⋅ 20 ⋅ 22 ⋅ 24 ⋅ 26 ⋅ 28 ⋅ 30 ⋅ 32 17 ⋅ 19 ⋅ 21 ⋅ 23 ⋅ 25 ⋅ 27 ⋅ 29 ⋅ 31 16 ⋯ {\displaystyle e=2\cdot {\sqrt {\frac {4}{3}}}\cdot {\sqrt[{4}]{\frac {6\cdot 8}{5\cdot 7}}}\cdot {\sqrt[{8}]{\frac {10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}}\cdot {\sqrt[{16}]{\frac {18\cdot 20\cdot 22\cdot 24\cdot 26\cdot 28\cdot 30\cdot 32}{17\cdot 19\cdot 21\cdot 23\cdot 25\cdot 27\cdot 29\cdot 31}}}\cdots }
  • Представление через произведение : e = 3 ⋅ ∏ k = 1 ∞ (2 k + 3) k + 1 2 (2 k − 1) k − 1 2 (2 k + 1) 2 k {\displaystyle e={\sqrt {3}}\cdot \prod \limits _{k=1}^{\infty }{\frac {\left(2k+3\right)^{k+{\frac {1}{2}}}\left(2k-1\right)^{k-{\frac {1}{2}}}}{\left(2k+1\right)^{2k}}}}
  • Через числа Белла

E = 1 B n ∑ k = 0 ∞ k n k ! {\displaystyle e={\frac {1}{B_{n}}}\sum _{k=0}^{\infty }{\frac {k^{n}}{k!}}}

История

Данное число иногда называют неперовым в честь шотландского учёного Непера , автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x {\displaystyle x} был равен 10 7 ⋅ log 1 / e ⁡ (x 10 7) {\displaystyle 10^{7}\cdot \,\log _{1/e}\left({\frac {x}{10^{7}}}\right)} .

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году . Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует.

Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода . Он обнаружил, что если исходная сумма $ 1 {\displaystyle \$1} и начисляется годовых один раз в конце года, то итоговая сумма будет $ 2 {\displaystyle \$2} . Но если те же самые проценты начислять два раза в год, то $ 1 {\displaystyle \$1} умножается на 1 , 5 {\displaystyle 1{,}5} дважды, получая $ 1 , 00 ⋅ 1 , 5 2 = $ 2 , 25 {\displaystyle \$1{,}00\cdot 1{,}5^{2}=\$2{,}25} . Начисления процентов раз в квартал приводит к $ 1 , 00 ⋅ 1 , 25 4 = $ 2,441 40625 {\displaystyle \$1{,}00\cdot 1{,}25^{4}=\$2{,}44140625} , и так далее. Бернулли показал, что если частоту начисления процентов бесконечно увеличивать, то процентный доход в случае сложного процента имеет предел : lim n → ∞ (1 + 1 n) n . {\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}.} и этот предел равен числу e (≈ 2,718 28) {\displaystyle e~(\approx 2{,}71828)} .

$ 1 , 00 ⋅ (1 + 1 12) 12 = $ 2,613 035... {\displaystyle \$1{,}00\cdot \left(1+{\frac {1}{12}}\right)^{12}=\$2{,}613035...}

$ 1 , 00 ⋅ (1 + 1 365) 365 = $ 2,714 568... {\displaystyle \$1{,}00\cdot \left(1+{\frac {1}{365}}\right)^{365}=\$2{,}714568...}

Таким образом, константа e {\displaystyle e} означает максимально возможную годовую прибыль при 100 % {\displaystyle 100\%} годовых и максимальной частоте капитализации процентов .

Первое известное использование этой константы, где она обозначалась буквой b {\displaystyle b} , встречается в письмах Лейбница Гюйгенсу , -1691 годы .

Букву e {\displaystyle e} начал использовать Эйлер в 1727 году , впервые она встречается в письме Эйлера немецкому математику Гольдбаху от 25 ноября 1731 года , а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически», 1736 год . Соответственно, e {\displaystyle e} обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c {\displaystyle c} , буква e {\displaystyle e} применялась чаще и в наши дни является стандартным обозначением.

Каждая из функций Е проверяет указанное значение и возвращает в зависимости от результата значение ИСТИНА или ЛОЖЬ. Например, функция ЕПУСТО возвращает логическое значение ИСТИНА, если проверяемое значение является ссылкой на пустую ячейку; в противном случае возвращается логическое значение ЛОЖЬ.

Функции Е используются для получения сведений о значении перед выполнением с ним вычисления или другого действия. Например, для выполнения другого действия при возникновении ошибки можно использовать функцию ЕОШИБКА в сочетании с функцией ЕСЛИ :

= ЕСЛИ( ЕОШИБКА(A1); "Произошла ошибка."; A1 * 2)

Эта формула проверяет наличие ошибки в ячейке A1. При возникновении ошибки функция ЕСЛИ возвращает сообщение "Произошла ошибка." Если ошибки отсутствуют, функция ЕСЛИ вычисляет произведение A1*2.

Синтаксис

ЕПУСТО(значение)

ЕОШ(значение)

ЕОШИБКА(значение)

ЕЛОГИЧ(значение)

ЕНД(значение)

ЕНЕТЕКСТ(значение)

ЕТЕКСТ(значение)

аргумент функции Е описаны ниже.

    значение Обязательный аргумент. Проверяемое значение. Значением этого аргумента может быть пустая ячейка, значение ошибки, логическое значение, текст, число, ссылка на любой из перечисленных объектов или имя такого объекта.

Функция

Возвращает значение ИСТИНА, если

Аргумент "значение" ссылается на пустую ячейку

Аргумент "значение" ссылается на любое значение ошибки, кроме #Н/Д

Аргумент "значение" ссылается на любое значение ошибки (#Н/Д, #ЗНАЧ!, #ССЫЛ!, #ДЕЛ/0!, #ЧИСЛО!, #ИМЯ? или #ПУСТО!)

Аргумент "значение" ссылается на логическое значение

Аргумент "значение" ссылается на значение ошибки #Н/Д (значение недоступно)

ЕНЕТЕКСТ

Аргумент "значение" ссылается на любой элемент, который не является текстом. (Обратите внимание, что функция возвращает значение ИСТИНА, если аргумент ссылается на пустую ячейку.)

Аргумент "значение" ссылается на число

Аргумент "значение" ссылается на текст

Замечания

    Аргументы в функциях Е не преобразуются. Любые числа, заключенные в кавычки, воспринимаются как текст. Например, в большинстве других функций, требующих числового аргумента, текстовое значение "19" преобразуется в число 19. Однако в формуле ЕЧИСЛО("19") это значение не преобразуется из текста в число, и функция ЕЧИСЛО возвращает значение ЛОЖЬ.

    С помощью функций Е удобно проверять результаты вычислений в формулах. Комбинируя эти функции с функцией ЕСЛИ , можно находить ошибки в формулах (см. приведенные ниже примеры).

Примеры

Пример 1

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Скопируйте образец данных из приведенной ниже таблицы и вставьте его в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Формула

Описание

Результат

ЕПУСТО(A2)

Проверяет, является ли ячейка C2 пустой

ЕОШИБКА(A4)

Проверяет, является ли значение в ячейке A4 (#ССЫЛ!) значением ошибки

Проверяет, является ли значение в ячейке A4 (#ССЫЛ!) значением ошибки #Н/Д

Проверяет, является ли значение в ячейке A6 (#Н/Д) значением ошибки #Н/Д

Проверяет, является ли значение в ячейке A6 (#Н/Д) значением ошибки

ЕЧИСЛО(A5)

Проверяет, является ли значение в ячейке A5 (330,92) числом

ЕТЕКСТ(A3)

Проверяет, является ли значение в ячейке A3 ("Регион1") текстом

y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045...

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.