Домой / Обзор windows / Два устройства в одном irq что делать. Аппаратные прерывания. Контроллер прерываний. Отслеживание нагрузок при помощи специальной утилиты

Два устройства в одном irq что делать. Аппаратные прерывания. Контроллер прерываний. Отслеживание нагрузок при помощи специальной утилиты

Редко какой компьютер, особенно домашний, проживет всю свою жизнь, ни разу не подвергшись или модернизации, или добавлению новых устройств. В большинстве случаев, естественно, при соблюдении самых элементарных правил, такая операция проходит безболезненно, не вызывая никаких особых проблем. Но примерно каждый десятый (или даже двадцатый - не суть важно) компьютер доводится до нерабочего состояния: начинает часто зависать, отказывается выполнять какие-либо функции, а то и просто вываливается в столь любимый всеми нами синий экран смерти. Как правило, наиболее вероятная причина таких неполадок кроется в конфликтах оборудования (нового и старого), не поделивших какие-либо аппаратные ресурсы. Хорошо, если Ваша квалификация позволяет решить возникшие проблемы, или поблизости есть кто-то, который может Вам помочь, а если ничего подобного нет? Однако не боги, как известно, горшки обжигают, посидим, подумаем - глядишь, и прорвемся, ведь не так уж все и сложно, хотя проблема совместимости самого различного оборудования, с момента своего возникновения в середине 80-х годов, до сих пор ни сколько не уменьшилась. Предлагаемая статья поможет пользователю разобраться с одним из видов аппаратных ресурсов, требующихся для оборудования, и чаще всего являющихся первопричиной всевозможных конфликтов - с аппаратными прерываниями (IRQ).

Аппаратные ресурсы системы

Компоненты для своей работы могут требовать три основных вида различных аппаратных ресурсов. Практически любое устройство использует один или несколько портов ввода/вывода. В данном случае имеется в виду не последовательный или параллельный порт, а просто специальный адрес, что-то вроде адреса в оперативной памяти. Работа с этими портами осуществляется специальными командами центрального процессора, с помощью которых в порт или записывается какая-либо информация, или считывается из него. Зачастую обмен информацией между процессором и устройством идет только через порты, причем некоторые устройства берут на себя десяток, а то и более адресов портов, каждый из которых служит для выполнения какой-то определенной функции.

Гораздо реже используются каналы прямого доступа к памяти (DMA - Direct Memory Access). Данный тип взаимодействия предназначен для устройств, обменивающихся большими блоками данных с оперативной памятью, например, дисковые накопители или принтеры. Весь обмен идет в обход центрального процессора, который лишь инициирует операцию обмена и сразу же приступает к выполнению другой работы. Такой подход способен значительно увеличить производительность всей системы.

А третьим видом ресурсов являются аппаратные прерывания, которые являются базовым механизмом реакции системы на внешние события. Аппаратные прерывания, называемые обычно IRQ (Interrupt ReQuest) - это физические сигналы, с помощью которых контроллер устройства информирует процессор о необходимости обработать некоторый запрос. Условно схема обработки прерывания может выглядеть следующим образом:

  • процессор получает сигнал прерывания и его номер;
  • по специальной таблице отыскивается адрес программы, ответственной за обработку прерывания с данным номером - обработчика прерывания;
  • процессор приостанавливает выполнение текущей задачи, сохраняет промежуточные результаты и переключается на выполнение обработчика прерывания;
  • процессор получает доступ к устройству и проверяет причину возникновения прерывания;
  • запускаются запрошенные действия - инициализация, конфигурирование устройства, обмен данными и др.;
  • по выполнению всех необходимых операций процессор возвращается к прерванной задаче.

В отличие от программных прерываний, вызываемых исполняемой прикладной программой, аппаратные прерывания могут происходить в самые неожиданные моменты времени, и, кроме того, могут возникнуть одновременно сразу несколько прерываний. Для того чтобы система не слишком "задумалась", какое прерывание обслуживать в первую очередь, существует специальная схема приоритетов. Каждому прерыванию назначается свой уникальный приоритет. Если приходит одновременно несколько прерываний, то система отдает предпочтение самому высокоприоритетному, откладывая на время обработку остальных, менее важных, прерываний.

Распределение прерываний

Рассмотрим, как обычно распределяются прерывания в стандартном компьютере. Некоторые из номеров жестким образом привязаны к определенным устройствам, некоторые можно освободить и использовать для своих нужд. Начнем по порядку:

  • IRQ 0 - прерывание системного таймера. Генерируется 18,2 раза в секунду. Применяется в данном качестве с момента создания первого компьютера IBM PC (для другого использования этот номер недоступен);
  • IRQ 1 - прерывание клавиатуры. Генерируется контроллером клавиатуры при каждом нажатии на клавишу (для другого использования номер недоступен);
  • IRQ 2 в компьютерах класса XT, использовавших только 8 линий прерываний, был зарезервирован для дальнейшего расширения системы и, начиная с машин класса AT, стал использоваться для подключения второго контроллера. Сегодня IRQ 2 используется системой для совместимости со старым программным обеспечением, для другого использования номер недоступен;
  • IRQ 3 - прерывание асинхронного порта COM 2. Этим же прерыванием пользуются еще и устройства, работающие через порт COM 4. При желании их можно отключить, но присвоить IRQ 3 все равно больше никому не удастся;
  • IRQ 4 по аналогии с предыдущим, это прерывание используется устройствами, занимающими порты СОМ 1/COM 3;
  • IRQ 5 изначально предназначалось для использования вторым параллельным портом LPT2, но потом, когда от второго параллельного порта отказались, IRQ 5 перешло в разряд свободных. Позже активно использовалось большинством звуковых карт ISA. современные PCI-звуковые карты используют это прерывание исключительно для совместимости со старыми играми, подавляющее большинство которых поддерживают SB Pro. IRQ 5 можно использовать для других целей и привязать к слоту PCI;
  • IRQ 6 , начиная с первых PC, используется флоппи-контроллером (для другого использования номер недоступен);
  • IRQ 7 - по умолчанию прерывание первого параллельного порта LPT 1. При отключенном порте (если принтер отсутствует или рассчитан на USB) может использоваться различными устройствами. IRQ 7 можно привязать к слоту PCI;
  • IRQ 8 - прерывание часов реального времени, впервые появившихся в IBM AT. Другое использование невозможно;
  • IRQ 9 и IRQ 10 свободны;
  • IRQ 11 обычно резервируется для шины USB, однако может применяться и в других целях (для этого следует отключить поддержку USB в BIOS);
  • IRQ 12 используется для мыши типа PS/2, однако может применяться в других целях (если мышь PS/2 отсутствует или отключена);
  • IRQ 13 изначально применялось арифметическим сопроцессором, и теперь оно зарезервировано для совместимости со старым программным обеспечением (для другого использования номер недоступен);
  • IRQ 14 и IRQ 15 применяются, соответственно, первичным и вторичным IDE-контроллерами.

Узнать, как в данный момент распределены номера прерываний в Вашем конкретном случае можно несколькими способами. При запуске компьютера, еще до начала загрузки Windows, появляется текстовая таблица конфигурации. Сразу после нее идет перечень PCI-устройств с указанием назначенного им номера IRQ.

Или, если Вы все еще работаете с Windows 9x, то в панели управления есть иконка Система, щелкните на ней - и выбирайте закладку "Устройства". В свойствах устройства "Компьютер" можно найти перечень всех устройств с указанием их IRQ. В Windows 2000/ХР у нас нет непосредственного доступа к управлению прерываниями, поэтому для просмотра списка IRQ нужно воспользоваться стандартной информационной утилитой (Панель управления/Администрирование/Управление компьютером/Сведения о системе/Ресурсы аппаратуры). Ну и, наконец, никто не отменял использование утилит, тестирующих аппаратные и программные возможности компьютера.


Среди них, без сомнения, самой популярной является SANDRA, способная предоставить пользователю исчерпывающую информацию, в том числе и о прерываниях.

Конфликты устройств

Не вдаваясь в излишние детали, можно сказать, что конфликт - это ситуация, при которой несколько объектов одновременно пытаются получить доступ к одному и тому же системному ресурсу. Конфликт прерываний возникает в том случае, если несколько устройств используют одну и ту же линию прерывания для посылки сигнала запроса и отсутствует механизм, позволяющий ранжировать эти запросы, в результате чего происходит либо сбой, либо одно из устройств попросту перестает работать. Чтобы четко представлять себе, как можно избежать конфликтов или устранить их, нужно разобраться в механизме управления IRQ.

Как Вы знаете, персональные компьютеры начались с IBM PC ХТ. Его архитектура предусматривала всего восемь линий аппаратных прерываний, которыми управлял специальный контроллер. Каждой из них назначался свой уникальный номер, который определял приоритет прерывания и адрес его обработчика (так называемый вектор прерывания). Следующий вариант архитектуры, IBM PC AT, дополнил существующие линии еще восемью, для управления которыми использовался второй контроллер, подключаемый к одной из линий прерывания первого контроллера. К сожалению, на этом данная архитектура остановилась в своем развитии, поэтому все современные компьютеры, несмотря на значительно возросшее число используемых в них дополнительных устройств, по-прежнему имеют только шестнадцать линий прерываний, одно из которых резервируется для эмуляции второго контроллера.

Изначально у компьютера IBM PC AT была только одна шина, по которой устройства могли общаться с процессором и памятью - ISA. Большинство линий прерываний были закреплены за стандартными ISA-устройствами, поэтому, когда появилась новая универсальная шина PCI, выяснилось, что на ее долю осталось всего четыре свободные прерывания, обозначаемые как INT A, INT B, INT C, INT D, поэтому всего только четыре PCI устройства могут получить в системе независимые прерывания. Но при этом необходимо учитывать, что на особенном положении находится контроллер IDE, который не входит в число тех четырех устройств только потому, что, хотя по способу передачи данных он и является PCI-устойством, но за ним жестко закреплены свои прерывания IRQ 14 и IRQ 15, как для старых устройств ISA. Для шины AGP, которая является разновидностью шины PCI, "пожертвован" INT A, а шина USB, как один из системных компонентов, подключается к PCI, используя INT D, что уменьшает число "честных" PCI устройств всего до двух. Не следует забывать и о подсистеме управления питанием Power Management/System Management, которая так же требует своего прерывания. Таким образом, в реальной жизни, при наличии нескольких устройства PCI, использующих прерывания, невозможно обеспечить им уникальные аппаратные IRQ, и в таких случаях используются аппаратно-программный способ, основанный на базе технологии Plug & Play, что теоретически позволяет избежать возникновения конфликтов. Хотя в реальной жизни может случиться все, что угодно, да и оставшиеся до сих пор устройства ISA не умеют делиться линиями прерываний, потому являются основными провокаторами конфликтов. Таким образом, задача устранения конфликтов сводится к правильному распределению номеров прерываний в случае возникновения проблем с устройствами ISA или "глючными" драйверами.

В системе номера IRQ распределяются между физическими линиями дважды. Первый раз это делает системный BIOS при начальной загрузке системы. Каждому Plug & Play-устройству (а к ним относятся все PCI, современные ISA и все интегрированные на системной плате устройства) назначается один номер из числа доступных. Если номеров не хватает, несколько линий получают один общий. Для устройств PCI это не страшно - при наличии нормальных драйверов и поддержки со стороны операционной системы все должно нормально работать. А вот если один номер получают несколько ISA-устройств или не менее "гремучая" смесь из PCI- и ISA-устройств, то конфликт попросту неизбежен, и тогда придется вмешиваться в процесс автоматического распределения прерываний. В этом случае необходимо отключить все неиспользуемые ISA-устройства (в системах без слотов ISA они, тем не менее, присутствуют: это порты COM1, COM2 и дисковод). Также можно отключить режимы EPP и ECP порта LPT, освободив при этом прерывание IRQ7. Все операции по изменению прерываний в BIOS Setup осуществляются в разделе "PCI/PNP Configuration". Есть два способа повлиять на распределения номеров IRQ: заблокировать конкретный номер и напрямую назначить номер линии. Первый способ доступен для всех BIOS, корректируются пункты меню "IRQ x used by:" (в новых BIOS скрывается в подменю "IRQ Resources"). Тем прерываниям, которые должны быть назначены исключительно ISA-устройствам, нужно поставить "Legacy ISA". Тем самым при раздаче номеров для PCI-устройств данные прерывания будут пропущены. Поступать так следует в том случае, если какое-либо ISA-устройство упорно становится на одно прерывание с PCI-устройством, из-за чего оба они не работают. В таком случае необходимо найти номер этого IRQ и заблокировать его. PCI-устройство переходит на новый номер IRQ, а ISA-устройство остается "при своих". Второй способ управления номерами IRQ - прямое назначение, хотя и несколько сложнее первого, но гораздо более эффективный. Очень прискорбно, что далеко не все современные системные платы позволяют осуществлять эту операцию. В том же подменю BIOS Setup могут быть пункты вида "Slot X use IRQ" (другие названия: "PIRQx use IRQ", "PCI Slot x priority", "INT Pin x IRQ"). Эта опция позволяет устанавливать прерывания индивидуально каждому устройству на PCI и AGP шине. При этом необходимо соблюдать следующие правила:

  • Каждый PCI слот может активизировать до четырёх прерываний - INT A, INT B, INT C и INT D;
  • AGP слот может активизировать два прерывания - INT A и INT B;
  • Нормально когда каждый слот назначен как INT A. Остальные прерывания зарезервированы, если PCI/AGP устройство потребует больше, чем одно прерывание или если запрашиваемое прерывание занято;
  • AGP слот и PCI слот 1 распределяют одинаковые прерывания;
  • PCI слоты 4 и 5 так же распределяют одинаковые прерывания;
  • USB использует PIRQ_4.

Ниже приведена таблица, показывающая связь между PIRQ (Programmable Interrupt Request - программируемый запрос прерывания) и INT (Interrupt - прерывание):

Сигнал AGP Slot
PCI Slot 1
PCI Slot 2 PCI Slot 3 PCI Slot 4
PCI Slot 5
PIRQ_0 INT A INT D INT C INT B
PIRQ_1 INT B INT A INT D INT C
PIRQ_2 INT C INT B INT A INT D
PIRQ_3 INT D INT C INT B INT A

Обычно следует оставить опцию в положении AUTO. Но, если возникла необходимость установить индивидуальное IRQ устройству на AGP или PCI шине, прежде всего, необходимо определить, в каком слоте установлено устройство. Потом, сверившись с таблицей, можно установить основной PIRQ. Например, если сетевая карта установлена в слот 3, то основной PIRQ будет PIRQ_2, потому как все слоты назначаются, по возможности, на INT A. После этого выбирается желаемое IRQ, присваивая ему соответствующее значение PIRQ. Только необходимо помнить, что BIOS будет пытаться назначить PIRQ в INT A для каждого слота. Так что, для AGP и PCI 1 слотов основной PIRQ это PIRQ_0, тогда как для PCI слота 2 основной PIRQ это PIRQ_1 и так далее. Второй раз номера прерываний распределяются операционной системой, хотя Windows 9х начинает вмешиваться в произведенные BIOS-ом действия только в крайних случаях. В Windows 98 управление системой распределения IRQ осуществляется с помощью стандартного менеджера устройств. В списке системных устройств нужно найти шину PCI.


В ее свойствах есть особая закладка. Если все настроено правильно, там будет упомянут минипорт ("успешно загружен"), а управление шиной PCI (Steering) будет включено. Таким образом, Windows"98 имеет средства для управления распределением номеров прерываний между физическими линиями. Но поскольку и BIOS чаще всего с этим хорошо справляется, этот механизм не задействуется. Но иногда он просто необходим. При использовании устаревших ISA-устройств, не поддерживающих технологию Plug & Play, BIOS может его и не заметить, отдав занятое им прерывание PCI-устройству - опять конфликт. Для его разрешения необходимо нужное прерывание зарезервировать в диспетчере устройств Windows"98.

Кроме резервирования, можно непосредственно задать номер прерывания для устройства. Для этого нужно в его свойствах найти закладку "Ресурсы", отключить автоматическую настройку и попытаться изменить назначенный номер прерывания. Будьте осторожны, такая операция срабатывает далеко не всегда и порой может привести к совершенно непредсказуемым результатам.

А вот о Windows 2000 (а равно и ХР) - разговор отдельный. Если у Вас достаточно современный компьютер, то он наверняка поддерживает интерфейс конфигурирования ACPI. Windows 2000 в таком случае вообще проигнорирует действия BIOS и "повесит" все PCI-устройства на одно логическое прерывание. В общем случае это будет отлично работать (когда нет устройств ISA), но иногда могут возникнуть проблемы. Чтобы получить возможность изменять номера прерываний, нужно либо поменять HAL-ядро, либо переустановить Windows 2000 с отключенным в BIOS ACPI. Замена ядра производится так: в диспетчере устройств выбирается "Компьютер/Компьютер с ACPI", после этого необходимо изменить драйвер на "Стандартный компьютер" и перезагрузиться. Если это не поможет, придется переустановить Windows 2000 заново.

Заключительные советы

Установив новую операционную систему со всеми драйверами устройств и, убедившись в том, что она работает без проблем, стоит записать все настройки компьютера, особенно если осуществлялись какие-либо изменения установок по умолчанию. Надежнее всего такую информацию записать на обычном листке бумаги. Такая информация может быть очень полезна при внесении каких-либо изменений в настроенную систему, а так же поможет решить проблемы, которые могут возникнуть, если при установке нового оборудования все настройки "съедут" (такое иногда тоже бывает). И, самое главное, помните: большинство возникающих проблем связано с низким уровнем компьютерной грамотности хозяина компьютера. Поэтому нужно всегда стремиться к самообразованию, тогда и проблем будет поменьше, а те, что все-таки возникнут - не будут казаться неразрешимыми.

Конфликт - это ситуация, при которой несколько объектов одновременно пытаются получить доступ к ресурсу, который предназначен только для одного из них. Конфликт прерываний возникает в том случае, если несколько устройств используют одну и ту же линию прерывания для посылки сигнала запроса, и нет механизма, позволяющего обрабатывать конкурирующие запросы. Если драйвер, получая управление, работает не с тем устройством, которое послало запрос, то либо происходит сбой, либо одно из устройств попросту не работает.

Возникает вопрос: могут ли несколько устройств использовать одну и ту же линию прерывания, или это в принципе невозможно? Ведь если драйвер сможет определить, от кого именно пришел запрос, то он будет реагировать на сигналы только "своего" устройства, игнорируя все остальные. Но это должно быть каким-либо образом заранее оговорено, иначе конфликт неизбежен.

Локальная шина PCI была спроектирована с учетом совместного использования прерываний. Каждое устройство PCI должно корректно работать на одной линии прерывания с другими PCI-устройствами. Это сделано следующим образом: факт наличия сигнала на линии прерывания определяется не по фронту, т.е. изменению уровня напряжения, а по самому факту наличия определенного напряжения. Изменять напряжение в линии может сразу несколько устройств, становясь как бы в очередь на обслуживание.

Таким образом, совместное использование одного IRQ несколькими PCI-устройствами не является конфликтом по определению (рис.). Однако иногда проблемы все-таки возникают. Во-первых, не все устройства PCI корректно работают на одной линии прерывания с другими. Во-вторых, иногда драйверы имеют ошибки, из-за которых они не могут правильно определять источник сигнала, мешая другим драйверам. В-третьих, далеко не все устройства работают на шине PCI; например, ISA-устройства, к которым относятся, например, контроллеры COM/LPT-портов, делить прерывания с другими не умеют.

Рис. Win2000 Device Manager IRQ Map - IO PIC Intel 440BX Chipset

Рис. Win2000 IRQ MAP - IO APIC - Via KT266a Chipset

В результате возможны ситуации, когда компьютер начинает часто зависать, отказывается выполнять какие-либо функции, а то и просто вываливается в так называемый «синий экран смерти».

Apic (Advanced Programmable Interrupt Controller, Улучшенный программируемый контроллер прерываний)

Как было показано выше, линия прерывания – очень дефицитный ресурс для компьютера. Однако, с развитием компьютерной индустрии количество различных внешних устройств в компьютере постоянно увеличивается. Например, на одной материнской плате могут присутствовать 5-6 слотов PCI, слот AGP, встроенный IDE-контроллер, встроенный SCSI-контроллер, встроенный 1/2-портовый сетевой адаптер и пр. И всем этим устройствам необходимы прерывания. 16 линий IRQпостепенно стало не хватать.

APIC – это контроллер прерываний (interrupt), позволяющий использовать 24 аппаратных прерывания вместо 16. Ограничение в 16 аппаратных прерываний, не менявшееся с 1982 года, сдерживало установку в персональный компьютер дополнительных устройств. В конце 2001 года появились первые материнские платы с APIC.

Рис. Система прерываний в многопроцессорной среде.

Предыдущее описание относилось к PIC, разработанным для однопроцессорных систем. Если система включает два и более процессоров, этот подход уже непозволителен и требуются более сложные PIC.

Все современные процессоры x86 включают в себя локальный APIC (local APIC). Каждый local APIC имеет 32-разрядные регистры, внутренние часы, локальный таймер и две дополнительные линии IRQ: LINT0 и LINT1, зарезервированные для прерываний local APIC. Все локальные APIC соединены с внешним APIC ввода-вывода (I/O APIC).

I/O APIC содержит набор из 24 линий IRQ, 24-входовую таблицу перенаправления прерываний, программируемые регистры и блок сообщений для посылки и получения сообщений по шине APIC. В отличие от выводов IRQ микросхемы 8259A, приоритет прерывания не привязан к номеру вывода.

Каждая запись в таблице перенаправления прерываний может быть запрограммирована индивидуальна, чтобы отобразить вектор прерывания и его приоритет, процессор, который будет обрабатывать прерывание и как этот процессор будет выбран. Информация в таблице перенаправления прерываний используется для трансляции каждого внешнего сигнала в сообщение, адресованное одному или нескольким local APIC через шину APIC.

Статическое распределение

Сигнал IRQ доставляется локальным APIC, перечисленным в соответствующей записи таблицы перенаправления прерываний. Прерывание доставляется одному конкретному CPU, множеству CPU или всем CPU.

Динамическое распределение

Сигнал IRQ доставляется локальному APIC процессора, который выполняет процесс с наименьшим приоритетом.

Каждый локальный APIC имеет программируемый регистр приоритета задания, который используется для вычисления приоритета текущего процесса. Intel предполагает, что этот регистр будет модифицироваться ядром операционной системы при каждом переключении процесса.

Кроме распределения прерываний по процессорам мульти-APIC система позволяет CPU генерировать межпроцессорные прерывания. Когда CPU желает послать прерывание другому CPU, он сохраняет вектор прерывания и идентификатор целевого local APIC в коммандном регистре прерываний (Interrupt Command Register (ICR)) своего локального APIC. Тогда сообщение посылается через шину APIC к целевому local APIC, который выпускает соответствующее прерывание своему CPU.

В настоящее время множество однопроцессорных систем включают чип I/O APIC, который может быть сконфигурирован двумя способами:

1. Как стандартный 8259A PIC, связанный с CPU. Local APIC отключен и две линии LINT0 и LINT1 сконфигурированы как INTR и NMI выводы.

2. Как стандартный внешний I/O APIC. Local APIC включен и все внешние прерывания получаются через I/O APIC.

  • Алиева Елена Викторовна , студент
  • Уфимский государственный авиационный технический университет
  • КОНТРОЛЛЕР ПРЕРЫВАНИЙ
  • КОНТРОЛЛЕР
  • АППАРАТНЫЕ ПРЕРЫВАНИ
  • ПРЕРЫВАНИЕ

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени. Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

  • Автоматизация документооборота склада производственного предприятия
  • Calls-технологии, особенности, применение и эффективность
  • Разработка модели информационной системы юридического отдела по сопровождению и заключению договоров предприятия

Введение

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Т.е. это процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возвратом к прерванной программе. Нажимая клавишу на клавиатуре, мы инициируем немедленный вызов программы, которая распознает клавишу, заносит ее код в буфер клавиатуры, из которого он считывается другой программой. Т.е. на некоторое время микропроцессор прерывает выполнение текущей программы и переключается на программу обработки прерывания, так называемый обработчик прерывания. После того, как обработчик прерывания завершит свою работу, прерванная программа продолжит выполнение с точки, где было приостановлено ее выполнение. Адрес программы-обработчика прерывания вычисляется по таблице векторов прерываний.

Механизм прерываний поддерживается на аппаратном уровне. В зависимости от источника, прерывания делятся на:

  • аппаратные - возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени;
  • программные - вызываются искусственно с помощью соответствующей команды из программы (int), предназначены для выполнения некоторых действий операционной системы, являются синхронными;
  • исключения - являются реакцией микропроцессора на нестандартную ситуацию, возникшую внутри микропроцессора во время выполнения некоторой команды программы (деление на ноль, прерывание по флагу TF (трассировка)) .

Аппаратные средства системы прерываний

Система прерываний - это совокупность программных и аппаратных средств, реализующих механизм прерываний.

К аппаратным средствам системы прерываний относятся:

  • выводы микропроцессора - на них формируются сигналы, извещающие микропроцессор либо о том, что некоторое внешнее устройство «просит уделить ему внимание» (INTR), либо о том, что требуется безотлагательная обработка некоторого события или катастрофическая ошибка (NMI)
  • INTR - вывод для входного сигнала запроса на прерывание,
  • NMI - вывод для входного сигнала немаскируемого прерывания
  • INTA - вывод для выходного сигнала подтверждения получения сигнала прерывания микропроцессором (этот сигнал поступает на одноименный вход микросхемы контроллера 8259А;
  • программируемый контроллер прерываний 8259А (предназначен для фиксирования сигналов прерываний от восьми различных внешних устройств; он выполнен в виде микросхемы; обычно используют две последовательно соединенные микросхемы, поэтому кол-во возможных источников внешних прерываний до 15 плюс одно немаскируемое прерываний; именно он формирует номер вектора прерывания и выдает его шину данных);
  • внешние устройства (таймер, клавиатура, магнитные диски и т.п.)

Обработка прерываний

Прерывание вызывает ряд событий, которые происходят как в аппаратном, так и в программном обеспечении. На рис. 1 показана типичная последовательность этих событий.

После завершения работы устройства ввода-вывода происходит следующее:

  • Устройство посылает процессору сигнал прерывания.
  • Перед тем как ответить на прерывание, процессор должен завершить исполнение текущей команды (см. рис. 1).
  • Процессор производит проверку наличия прерывания, обнаруживает его и посылает устройству, приславшему это прерывание, уведомляющий сигнал об успешном приеме. Этот сигнал позволяет устройству снять свой сигнал прерывания.
Рисунок 1. Временная диаграмма программы: медленный ввод-вывод

Теперь процессору нужно подготовиться к передаче управления обработчику прерываний. Сначала необходимо сохранить всю важную информацию, чтобы в дальнейшем можно было вернуться к тому месту текущей программы, где она была приостановлена. Минимальная требуемая информация - это слово состояния программы и адрес очередной выполняемой команды, который находится в программном счетчике. Эти данные заносятся в системный управляющий стек.

Рисунок 2. Обработка простого прерывания

Далее в программный счетчик процессора загружается адрес входа программы обработки прерываний, которая отвечает за обработку данного прерывания. В зависимости от архитектуры компьютера и устройства операционной системы может существовать как одна программа для обработки всех прерываний, так может быть и своя программа обработки для каждого устройства и каждого типа прерываний. Если для обработки прерываний имеется несколько программ, то процессор должен определить, к какой из них следует обратиться. Эта информация может содержаться в первоначальном сигнале прерывания; в противном случае для получения необходимой информации процессор должен по очереди опросить все устройства, чтобы определить, какое из них отправило прерывание.

Как только в программный счетчик загружается новое значение, процессор переходит к следующему циклу команды, приступая к ее извлечению из памяти. Так как команда извлекается из ячейки, номер которой задается содержимым программного счетчика, управление переходит к программе обработки прерываний. Исполнение этой программы влечет за собой следующие операции.

Содержимое программного счетчика и слово состояния прерываемой программы уже хранятся в системном стеке. Однако это еще не вся информация, имеющая отношение к состоянию исполняемой программы. Например, нужно сохранить содержимое регистров процессора, так как эти регистры могут понадобиться обработчику прерываний. Поэтому необходимо сохранить всю информацию о состоянии программы. Обычно обработчик прерываний начинает свою работу с записи в стек содержимого всех регистров. Другая информация, которая должна быть сохранена, обсуждается в главе 3, "Описание процессов и управление ими". На рис. показан простой пример, в котором программа пользователя прерывается после выполнения команды из ячейки N. Содержимое всех регистров, а также адрес следующей команды (N+1), в сумме составляющие М слов, заносятся в стек. Указатель стека при этом обновляется, указывая на новую вершину стека. Обновляется и программный счетчик, указывая на начало программы обработки прерывания.

Теперь обработчик прерываний может начать свою работу. В процесс обработки прерывания входит проверка информации состояния, имеющая отношение к операциям ввода-вывода или другим событиям, вызвавшим прерывание. Сюда может также входить пересылка устройствам ввода-вывода дополнительных инструкций или уведомляющих сообщений.

После завершения обработки прерываний из стека извлекаются сохраненные ранее значения, которые вновь заносятся в регистры, возобновляя таким образом то состояние, в котором они пребывали до прерывания.

Последний этап - восстановление из стека слова состояния программы и содержимого программного счетчика. В результате следующей будет выполняться команда прерванной программы.

Из-за того, что прерывание не является подпрограммой, вызываемой из программы, для полного восстановления важно сохранить всю информацию состояния прерываемой программы. Однако прерывание может произойти в любой момент и в любом месте программы пользователя. Это событие непредсказуемо .

Контроллер прерываний

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. По аналогии функции контроллера прерываний можно сравнить с секретарём какого–нибудь начальника. Секретарь должен решить, кого из посетителей допустить к боссу в первую очередь, а кого и потом, исходя из приоритетов, отдаваемых боссом и статуса самого посетителя. Так и в компьютерной системе, возможна такая ситуация, когда несколько переферийных устройств послали сигнал прерывания или запрос на прерывание. В компьютерной литературе этот сигнал обозначается IRQ (Interrupt Request).

Как уже выше говорилось, прерывания имеют определённый приоритет, который позволяет контроллеры прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и периферийных устройств, генерирующие прерывания. Вот эти устройства:
–IRQ 0, системный таймер; –IRQ 1, клавиатура; –IRQ 2, исползуется для запросов устройств, подключенных каскадом; –IRQ 8, часы реального времени; –IRQ 9, зарезервировано; –IRQ 10, зарезервировано; –IRQ 11, зарезервировано; –IRQ 12, ps/2–мышь; –IRQ 13, сопроцессор; –IRQ 14, контроллер «жёсткого» диска; –IRQ 15, зарезервировано; –IRQ 3, порты COM2,COM4; –IRQ 4, порты COM1,COM3; –IRQ 5, порт LPT2; –IRQ 6, контроллер дисковода; –IRQ 7, порт LPT1,принтер.

Здесь сигналы приведены в порядке убывания приоритетов. Можно заметить, что после IRQ 2, следует IRQ 8. Дело в том, что в своё время контроллер прерываний состоял из двух микросхем, одна была подключена к другой. Вот эта вторая микросхема и подключается к линии IRQ 2, образуя каскад. Она обслуживает линии IRQ8–IRQ 15. А затем следуют линии первой микросхемы .

Работа контроллера прерывания

Работа контроллеов прерываний рассматривается на основе микросхем фирмы Intel 8259A, которые применялись в теперь уже очень старых компьютерах с процессорами до 386 серии. В этих компьютерах обычно было 2 микросхемы 8259A, подключенных каскадно, то–есть одна к другой. Одна из микросхем, подключенная по линии запроса на прерывание непосредственно к процессору является ведущей или мастером. Остальные,подключаются к ведущей через аналогичные выводы, называются ведомыми.


Рисунок 3. Схема подключения контроллеров прерываний и их взаимодействие с центральным процессором

На рисунке 3 изображена схема подключения контроллеров прерываний и их взаимодействие с центральным процессором. Сигналы на прерывание от переферийных устройств или ведомых контроллеров поступают на входы IR0–IR7 ведущего контроллера. Внутренняя логика ведущего контроллера обрабатывает поступившие запросы с точки зрения приоритета. Если приоритет запроса устройства достаточен, то на выходе INT контроллера вырабатывается сигнал, поступающий на вход INTR процессора. В противном случае, запрос блокируется.

Если процессор разрешает прерывания, то после завершения выполнения текущей команды, он вырабатывает по линии INTA последовательность сигналов, которая переводит ведомый контроллер в состояние невосприимчивости к поступающим новым запросам на прерывание, а кроме того, на линию данных выводится информация из внутренних регистров контроллера по которой процессор распознаёт тип прерывания.

Разрешение на прерывание процессор передаёт контроллеру прерываний через контроллер шины. Сигнал RD предназначен для того, чтобы контроллер прерываний поместил на шину данных содержимое внутренних регистров. По сигналу WR контроллер прерываний, наоборот, принимает данные с одноимённой шины и записывает их во внутренние регистры. Соответственно, это влияет на режим работы контроллера прерываний.

Вход CS подключается к шине адреса и по этому сигналу происходит идентификация конкретного контролллера прерываний. Вход A0 указывает на порт контроллера прерываний в пространстве ввода–вывода.

Входы IR0–IR7 предназначены для приёма запросов на прерывание от переферийных устройств и ведомых контроллеров.

Выходы CAS0–CAS2 предназначены для идентификации конкретного ведомого контроллера .

В статье рассмотрены аппаратные прерывания и устройство, функции, работу контроллера прерываний. Данный контроллер прерываний появился ещё в первых PC–совместимых компьютерах. С тех пор, и процессоры, и сам компьютер во многом изменились, хотя некоторые моменты остались. Поэтому, для того, чтобы было понятней и была рассмотрена организация контроллера прерываний 8295A.

На приведенной выше схеме показаны сигналов приходящие не только на ведомый и ведущий контроллеры прерываний, но и на остальные ведомые. Однако на вашем компьютере или ноутбуке на самом деле 2 контроллера прерываний, как выше указывалось: ведущий и ведомый. Но можно создавать свои компьютерные системы, используя таким образом до 64 ведомых контроллеров прерываний.

В современных компьютерах уже давно функции контроллера прерываний выполняют не микросхемы 8259A, а южный мост. Однако, для всех программ и устройств всё остаётся по–прежнему. Более того, контроллер прерываний можно программировать, и обращаться к внутренним регистрам и портам необходимо точно также, как и к контроллеру 8259A .

Заключение

В данной работе были рассмотрены прерывания, а именно аппаратные средства обработки прерываний и принцип обработки прерываний. Также рассмотрены контроллеры прерываний и принцип их работы.

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени.

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

Список литературы

  1. Лекция. Прерывания. Эл. Ресурс. http://hromatron.narod.ru/_lekcii/prerivania_lekcia_g2013.htm
  2. Системные прерывания | Аппаратное прерывание | Обработка прерываний http://life-prog.ru/view_os.php?id=16
  3. Контроллер прерываний. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php,
  4. Прерывания. Контроллер прерываний. Устройство, функции, работа. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php
  5. Структура и инициализация контроллера прерываний Intel 8259A Эл.ресурс https://dev64.wordpress.com/2012/05/30/8259-programming/

Думаю, многие любознательные пользователи, наверняка не раз встречали такое сокращение, как IRQ. Его можно встретить, например, если вы любите заглядывать в программу «Менеджер устройств» в Windows. Если вы выберете любое устройство, к примеру, клавиатуру, выберете при помощи правой кнопки мыши пункт меню «Свойства», и в появившемся окне сделаете активной закладку «Ресурсы», то в списке ресурсов вы увидите надпись IRQ 01.

Что же такое IRQ и для чего оно нужно?

Аббревиатура IRQ расшифровывается как Interrupt ReQuest (запрос на прерывание). Для того, чтобы понять, для чего оно нужно, следует вспомнить подробности организации работы персонального компьютера.

Кровеносной системой компьютера, по которой обмениваются информацией процессор и прочие устройства, является системная шина. Но как вообще процессор способен отличить запросы на обработку информации, поступающие по шине от различных устройств?

Для этого и существует система аппаратных прерываний (IRQ). Каждое прерывание имеет определенный номер (нумерация начинается с 0) и закреплено за определенным устройством. Так, за клавиатурой закреплено прерывание под номером 1, отсюда и обозначение IRQ 01.

При поступлении запроса от устройства компьютер прерывает (отсюда и появился сам термин «прерывание») обработку текущей информации и начинает обработку вновь поступившего. Если прерываний несколько, то они обрабатывается в порядке приоритетов, закрепленных за каждым из них. Как правило, чем меньше номер прерывания, тем больший приоритет для процессора имеет устройство, закрепленное за этим прерыванием, но это правило соблюдается далеко не всегда.

Обслуживает обработку IRQ специальный чип, который носит название контроллера прерываний. Как правило, эта микросхема является частью центрального процессора, а иногда выделяется в отдельный чип на материнской плате. Для обработки каждого прерывания в BIOS существует специальная микропрограмма, называемая обработчиком прерывания. Адреса всех обработчиков хранятся в так называемой таблице векторов прерываний.

Раньше, в первых компьютерах семейства XT была распространена 8-разрядная , поэтому всего устройствам было доступно 8 прерываний. С появлением 16-разрядной шины ISA их количество увеличилось до 16.

Настройка Interrupt ReQuest

Надо сказать, что прерывания, закрепленные за некоторыми устройствами, не является фиксированными и их можно изменить программно. Например, IRQ стандартно использующееся последовательным портом Com 2, может использовать и устанавливаемый в слот расширения модем. В современных компьютерах и операционных системах, поддерживающих стандарт PnP и работающих под управлением ОС Windows, значения IRQ для устройств, подключаемых в слоты шины, подбираются автоматически.

Но не все было так просто в прежние времена, когда пользователь должен был вручную устанавливать значение IRQ во многих программах, работавших под операционной системой DOS. Например, при установке в систему звуковой карты, пользователю требовалось выбрать свободное прерывание из очень небольшого числа доступных (как правило, это было IRQ 5) и указать это значение в запускаемой программе, например, в какой-нибудь игре.

Во многих BIOS имеется возможность поменять стандартные значения IRQ в программе Setup. Обычно эта опция располагается в разделах IRQ Resources или PCI/PNP Configuration.

Установка для устройства значения IRQ, равного значению IRQ, уже занятого каким-либо устройством в большинстве случаев приводит к неработоспособности одного из этих устройств или сразу обоих, а иногда чревато и зависанием компьютера.

В более современной шине PCI система управления прерываниями была кардинально изменена, а возможности управления прерываниями были расширены. Благодаря технологии IRQ Sharing, а также стало возможным размещение нескольких устройств на одном канале прерывания, а у внешних устройств, подключаемых в слоты PCI, появилась возможность автоматического распределения ресурсов между собой.

Кроме того, в современных компьютерах обычно используется расширенный программируемый контроллер прерываний (APIC, ), поддерживающий 24 канала Interrupt ReQuest. Расширенный контроллер прерываний выполнен в виде двух микросхем, одна из которых расположена в самом процессоре, а другая на материнской плате. Этот контроллер прерываний впервые появился в системах на основе процессоров Pentium. Однако при этом была оставлена поддержка старой системы прерываний в целях совместимости. Очередным шагом в развитии принципов обработки прерываний является технология Message Signaled Interrupts, поддержка которой появилась в линейке ОС Windows, начиная с Windows Vista.

Не следует путать аппаратные прерывания IRQ c программными прерываниями BIOS, о которых речь пойдет в отдельной статье. Программные прерывания BIOS, как правило, используются для организации работы программного обеспечения с устройствами ввода-вывода и обозначаются при помощи сокращения INT. Многие из них аналогичны по своим функциям аппаратным IRQ, но имеют при этом другие номера.

Список номеров Interrupt ReQuest в стандартной схеме для 16-битной шины ISA:

  1. Системный таймер
  2. Клавиатура
  3. Дополнительный контроллер прерываний (для совместимости с 8-битной шиной)
  4. Порты Com 1 и 3
  5. Порты Com 2 и 4
  6. Свободно (в 8-битной шине - контроллер жесткого диска)
  7. Контроллер гибких дисков (FDD)
  8. Параллельный порт LPT
  9. Часы реального времени CMOS
  10. Совмещено с IRQ 2
  11. Свободно
  12. Свободно
  13. Порт мыши PS/2
  14. Сопроцессор (в настоящее время практически не используется)
  15. Первый контроллер IDE
  16. Второй контроллер IDE

Список дополнительных номеров IRQ, которые использует расширенный контроллер прерываний APIC:

  1. Контроллер USB
  2. Интегрированная звуковая подсистема (AC’97 или HDA)
  3. Контроллер USB
  4. Контроллер USB
  5. Встроенная сетевая карта
  6. Свободно
  7. Свободно
  8. Контроллер USB 2.0

Соответствие номеров IRQ и прерываний BIOS:

Таблица соотношения аппаратных IRQ и программных INT BIOS

Заключение

Итак, в этой статье вы смогли узнать, что означает сокращение IRQ, и что представляют собой аппаратные прерывания. Они являются встроенным механизмом распределения ресурсов компьютера и предназначены для организации доступа устройств к центральному процессору. Правильное распределение и настройка IRQ позволяет избежать конфликтов между устройствами и обеспечить стабильную работу системы.

Управление приоритетами IRQ

Управление запросами на аппаратное прерывание

Большинству компонентов, непосредственно присоединенных к системной плате, включая PCI-слоты, IDE-контроллеры, последовательные порты, порт клавиатуры даже CMOS системной платы, присвоены отдельные IRQ. Запрос на аппаратное прерывание, или IRQ, прерывает нормальный ход работы процессора, позволяя устройству функционировать. Windows 7 позволяет расположить по приоритету один или более IRQ (которые преобразовываются в одно или более устройств), потенциально улучшая произво­дительность этих устройств.

Действия для изменения приоритета IRQ

  1. Начните с запуска утилиты информации о системе (msinfo32.exe) и откройте ветвь Сведения о системе Аппаратные ресурсы Прерывания (IRQ), чтобы про­смотреть, какие IRQ и для каких устройств используются.
  2. Затем откройте редактор реестра (см. главу 3) и перейдите к ветви HKEY_LOCAL_ MACHINE\SYSTEM\CurrentControlSet\Control\PriorityControl.
  3. Создайте новое значение DWORD в этом разделе и назовите параметр IRQ#Priority, где # - номер IRQ-устройства, для которого вы хотите задать приоритет (напри­мер, IRQ13Priority соответствует IRQ 13, то есть арифметическому сопроцес­сору).
  4. Дважды щелкните на новом значении и укажите номер приоритета. Введите 1 для высшего приоритета, 2 для второго и т. д. Удостоверьтесь, что не ввели одно и то же число для двух записей, и не пытайтесь сделать все сразу, лучше поэкспериментируйте с одним или двумя значениями.
  5. По окончании закройте редактор реестра и перезагрузите компьютер.