Домой / Обзор windows / Постоянное запоминающее устройство (ПЗУ) — что это такое и зачем используется. В чем заключается назначение ПЗУ Основные типы пзу

Постоянное запоминающее устройство (ПЗУ) — что это такое и зачем используется. В чем заключается назначение ПЗУ Основные типы пзу

Структура микропроцессора Устройство управления Устройство управления является функционально наиболее сложным устройством ПК. Оно вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки машины. Упрощенная функциональная схема УУ показана на рис. 4.5. Здесь представлены: Рис. 4.5.Укрупненная функциональная схема устройства управления Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции. Регистр команд расположен в интерфейсной части МП, в блоке регистров команд. Дешифратор операций – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов. Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Импульс по выбранному дешифратором операций в соответствии с кодом операции считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов. Узел формирования адреса (находится в интерфейсной части МП) – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП. Кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
  • выборки из регистра-счетчика адреса команды MПП адреса ячейки ОЗУ, где хранится очередная команда программы;
  • выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
  • расшифровки кода операции и признаков выбранной команды;
  • считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
  • считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
  • выборки операндов (по сформированным адресам) и выполнения заданной операции обработки этих операндов;
  • записи результатов операции в память;
  • формирования адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ (рис. 4.6) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Рис. 4.6.Функциональная схема АЛУ Сумматор – вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов; сумматор имеет разрядность двойного машинного слова. Регистры - быстродействующие ячейки памяти различной длины: регистр 1 (Рг1) имеет разрядность двойного слова, а регистр 2 (Рг2) – разрядность слова. При выполнении операций в Рг1 помещается первое число, участвующее в операции, а по завершении операции – результат; в Рг2 – второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может и принимать информацию с кодовых шин данных, и выдавать информацию на них, регистр 2 только получает информацию с этих шин. Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ. АЛУ выполняет арифметические операции (+, -, *, :) только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами. Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам. Микропроцессорная память Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т.е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами – тысячными долями микросекунды). Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях; МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны: от 14 двухбайтных регистров у МП 8086 до нескольких десятков регистров разной длины у МП Pentium . Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур. Интерфейсная часть микропроцессора Интерфейсная часть МП предназначена для связи и согласования МП с системной шиной ПК, а также для приема, предварительного анализа команд выполняемой программы и формирования полных адресов операндов и команд. Интерфейсная часть включает в свой состав адресные регистры МПП, узел формирования адреса, блок регистров команд, являющийся буфером команд в МП, внутреннюю интерфейсную шину МП и схемы управления шиной и портами ввода-вывода. Порты ввода-вывода – это пункты системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами. Всего портов у МП может быть 65536. Каждый порт имеет адрес – номер порта, соответствующий адресу ячейки памяти, являющейся частью устройства ввода-вывода, использующего этот порт, а не частью основной памяти компьютера. Порт устройства содержит аппаратуру сопряжения и два регистра памяти – для обмена данными и обмена управляющей информацией. Некоторые внешние устройства используют и основную память для хранения больших объемов информации, подлежащей обмену. Многие стандартные устройства (НЖМД, НГМД, клавиатура, принтер, сопроцессор и др.) имеют постоянно закрепленные за ними порты ввода-вывода. Схема управления шиной и портами выполняет следующие функции:
  • формирование адреса порта и управляющей информации для него (переключение порта на прием или передачу и др.);
  • прием управляющей информации от порта, информации о готовности порта и его состоянии;
  • организацию сквозного канала в системном интерфейсе для передачи данных между портом устройства ввода-вывода и МП.
Схема управления шиной и портами использует для связи с портами кодовые шины инструкций, адреса и данных системной шины: при доступе к порту МП посылает сигнал по КШИ, который оповещает все устройства ввода-вывода, что адрес на КША является адресом порта, а затем посылает и сам адрес порта. То устройство, адрес порта которого совпадает, дает ответ о готовности, после чего по КШД осуществляется обмен данными.

Постоянная память, или постоянное запоминающее устройство (ПЗУ или ROM, англ.) Служит для хранения программ начальной загрузки компьютера и тестирования его узлов. Используется только для чтения. Она энергонезависима, то есть записанная в ней информация не изменяется после выключения компьютера.

· По виду доступа:

· С параллельным доступом (parallel mode или random access): такое ПЗУ может быть доступно в системе в адресном пространстве ОЗУ. Например, К573РФ5;

· С последовательным доступом: такие ПЗУ часто используются для однократной загрузки констант или прошивки в процессор или ПЛИС, используются для хранения настроек каналов телевизора, и др. Например, 93С46, AT17LV512A.

· По способу программирования микросхем (записи в них прошивки):

· Непрограммируемые ПЗУ;

· ПЗУ, программируемые только с помощью специального устройства - программатора ПЗУ (как однократно, так и многократно прошиваемые). Использование программатора необходимо, в частности, для подачи нестандартных и относительно высоких напряжений (до +/- 27 В) на специальные выводы.

· Внутрисхемно (пере)программируемые ПЗУ (ISP, in-system programming) - такие микросхемы имеют внутри генератор всех необходимых высоких напряжений, и могут быть перепрошиты без программатора и даже без выпайки из печатной платы, программным способом.

В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различнымиконтроллерами, или компьютером (BIOS или OpenBoot на машинах SPARC).

Назначение и характеристика ОЗУ.

Оперативная память, или оперативное запоминающее устройство (ОЗУ или RAM, англ.) Она предназначена для хранения информации, изменяющейся в ходе выполнения процессором операций по ее обработке. Используется как для чтения, так и для записи информации. Энергозависима, то есть вся информация хранится в этой памяти только тогда, когда компьютер включен.

Физически для построения запоминающего устройства типа RАМ используют микросхемы динамической и статической памяти, для которых сохранение бита информации означает сохранение электрического заряда (именно этим объясняется энергозависимость всей оперативной памяти, то есть потеря при выключении компьютера всей информации, хранимой в ней).

Оперативная память компьютера физически выполняется на элементах динамической RАМ, а для согласования работы сравнительно медленных устройств (в нашем случае динамической RАМ) со сравнительно быстрым микропроцессором используют функционально для этого предназначенную кэш-память, построенную из ячеек статической RАМ. Таким образом, в компьютерах присутствуют одновременно оба вида RАМ. Физически внешняя кэш-память также реализуется в виде микросхем на платах, которые вставляются в соответствующие слоты на материнской плате.

Основные элементы ПК.

Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъемы - стыки подключаются внешние устройства: дополнительные блоки памяти, клавиатура, дисплей, принтер и др.

Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств и платы расширения с контроллерами - адаптерами внешних устройств.

ПЗУ. Принципы построения и

Микросхемы ПЗУ (Постоянное Запоминающее Устройство, ROM - Read-Only Memory

Память, доступная только для чтения) представляют собой однократно программируемое устройство памяти, предназначенное для чтения информации (энергонезависимое).
Различают несколько типов ПЗУ:
ROM (Read-Only Memory, Постоянное Запоминающее Устройство, ПЗУ). Строятся на мультиплексорах или по масочной структуре (см. ниже). Программируются на заводе при производстве. Репрограммирование невозможно.
PROM (Programmable ROM, Программируемое ПЗУ, ППЗУ). В качестве элементов программирования используются специальные перемычки. Программирование заключается в разрушении или образовании перемычки. Также является однократным действием, однако, в отличие от ROM, его можно осуществить даже в домашних условиях.
EPROM (Erasable PROM, Стираемое ППЗУ, СППЗУ). Исторически явилось первым репрограммируемым ПЗУ. Технология основана на применении транзисторов с плавающим затвором. ПЗУ на основе EPROM требуют стирания старой конфигурации под воздействием
ультрафиолетового (УФ) излучения с извлечением ИМС из устройств и имеют ограничение числа циклов программировании из-за деградации свойств материалов под воздействием УФ излучения.
EEPROM (Electrically Erasable PROM, Электрически Стираемое ППЗУ, ЭС-ППЗУ). ППЗУ, очищаемое электрическими сигналами. Для обновления не требует извлечения микросхемы из устройства и допускает достаточно большое число циклов стирания.
FLASH (флэш-память). Технологически аналогична EEPROM, однако в ней используется блочный доступ к сохраняемым данным.
ROM. Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация, как программы в микроконтроллерах, начальные загрузчики и BIOS в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации можно построить на мультиплексорах (рис. 1).
В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля).
Чтобы увеличить разрядность ячейки памяти ПЗУ, эти микросхемы можно соединять параллельно (выходы и записанная информация, естественно, остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рис. 2.
В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация выполняется при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше, - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в многомерную и тем самым существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Программирование ПЗУ производится на заводе – изготовителе.
PROM. Также разработаны программируемые ПЗУ. В этих микросхемах постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве микросхемы изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти логических единиц. В процессе программирования на выводы питания и выходы микросхемы подается повышенное питание. При этом если на выход микросхемы подается напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход микросхемы подать низкий уровень напряжения (присоединить к корпусу), то через перемычку будет протекать ток, который испарит эту перемычку, и при последующем считывании информации из этой ячейки будет считываться логический ноль. Программирование производится при помощи специального программатора.
Возможно также применение другой технологии создания PROM, когда перемычка образована трехслойным диэлектриком с чередованием слоев «оксид-нитрид-оксид». Программирующий импульс напряжения пробивает перемычку и создает проводящий канал между электродами. Величина тока, создаваемого импульсами программирования, влияет на диаметр проводящего канала, что позволяет управлять параметрами проводящей перемычки.

21 вопрос (Перепрограммируемые ПЗУ)

В перепрограммируемых ПЗУ, т.е. с изменяемым содержимым, на затворах матриц МОП-транзисторов длительное время могут храниться разряды, образующих заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

ПЗУ, программируемые маской. Самым простым видом ПЗУ является диодное ПЗУ (рис.3.41).

Рисунок 3.41 - Схема диодного ПЗУ

Выбор нужного слова производится подачей сигнала низкого уровня на соответствующую адресную шину А i . При этом диоды, соединяющие разрядные линии и выбранную адресную линию, имеют малое сопротивление, что обуславливает низкий уровень напряжения на соответствующих разрядных линиях. Если же диода в точке пересечения нет, то ток через резистор R не протекает и на выходе соответствующей разрядной линии Ш j устанавливается единичный сигнал. В ПЗУ (рис.3.41) записано восемь 3-разрядных кодов, соответствующих восьми двоичным числам от 000 до 111.

Кроме этого, матрица ПЗУ может быть построена и на МОП-транзисторах. С помощью маски для металлизации подключаются необходимые элементы.

В ПЗУ, программируемых пользователем, в отличие от ПЗУ, программируемых маской, информация может быть занесена пользователем с помощью специального пульта программирования. Применение ПЗУ такого типа целесообразно при небольшом числе БИС ПЗУ.

ПЗУ строятся на основе биполярных диодных матриц (рис.3.42) или матриц биполярных транзисторов аналогично матрице МОП-транзисторов в ПЗУ, программируемых маской. Работа ПЗУ обоих типов базируется на осаждении плавких вставок (ПВ) последовательно с переходами база-эмиттер биполярных транзисторов или p-n переходами диодов. ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при подаче импульса тока (обычно величиной 50-100 мкА и длительностью 2 мс). Как и в ПЗУ, программируемой маской, ошибки, допущенные при программировании ПЗУ рассматриваемого типа, исправить нельзя.

Рисунок 3.42 - Биполярная диодная матрица

Перепрограммируемые ПЗУ (ППЗУ) относятся к числу полупостоянных ЗУ, так как после стирания хранимой в ПЗУ информации возможно занесение в тот же накопитель новых данных. Существует два типа ППЗУ: на основе МОП-матриц и на основе ПЗУ со стиранием информации ультрафиолетовым (УФ) облучением кристалла.

22 вопрос (Назначение и типы Flash-памяти)

На сегодня производители выпускают накопители на флэш-памяти нескольких типов: это карты Compact Flash, SmartMedia, MultiMedia Card, SecureDigital Card, Memory Stick и

ATA Flash. Первыми накопителями на флэш-памяти, появившимися рынке, были карты ATA Flash. Эти накопители изготавливаются в виде стандартных карт PC Card. Помимо микросхем флэш-памяти в них устанавливается АТА-контроллер, и при работе они эмулируют обычный IDE-диск. Интерфейс этих карт параллельный. Карты ATA Flash не получили широкого распространения и в настоящее время используются крайне редко.

Compact Flash. Карты Compact Flash (CF) были предложены компанией SanDisk в качестве более компактной и удобной в работе альтернативы картам ATA Flash. Поэтому разработчики стандарта CF предусмотрели возможность работы этих карт как устройств PC Card или как IDE-устройств. В первом случае карты работают как обычные PC Card устройства и их интерфейс «превращается» в шину PC Card. Во втором - как жесткие IDE-диски и их интерфейс работает как АТА-шина.

Карты CF впервые появились в 1994 г. Все карты этого типа имеют 50-контактный параллельный интерфейс. Кстати, существуют карты CF двух типов - Туре I и Туре II. Карты типа Туре II на два миллиметра толще и появились только потому, что раньше корпуса карт Туре I не позволяли разместить внутри флэш-память большого объема для изготовления вместительных носителей CF. В настоящее время такой необходимости нет и карты Туре II постепенно уходят с рынка. Отметим, что в накопители для карт Туре II можно устанавливать карты Туре I, тогда как обратное невозможно.

Среди флэш-карт бесспорным лидером по производительности была CF-карта Transcend Ultra Performance 25x CompactFlash 256 Мбайт, которую можно по праву считать эталоном скорострельности современных флэш-накопителей. Скорость последовательной/случайной записи у этой флэш-карты достигает 3.6/0.8 Мбайт/с, скорость чтения - 4,0/3,7 Мбайт/с.

Скорость работы CF-карт замедляется с увеличением объема, что хорошо видно на примере флэш-карт SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт. Двукратный рост емкости приводит к снижению производительности на 30%. за исключением скорости случайной записи, которая выросла в 2.5 раза, - это выглядит довольно странно и неожиданно.

Скоростные характеристики CF-карт так же сильно зависят от производителя. У Kingston CompactFlash 256 Мбайт - низкая скорость записи (последовательная/случайная запись - 1.4/0.3 Мбайт/с), но по скорости чтения она была лидером (4.4/3,8 Мбайт/с). Карта PQI Hi-Speed Compact Flash 256 Мбайт продемонстрировала среднюю производительность в обоих случаях: запись - 2.1/0.7 Мбайт/с, чтение - 3.8/3,3 Мбайт/с. Карты SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт работали очень медленно: запись - 1,1/0,2 и 0,9/0,5 Мбайт/с, чтение - 2,3/2,1 и 1,8/1,7 Мбайт/с. А карта Transcend Ultra Performance 25х CompactFlash 256 Мбайт записывала и считывала данные одинаково хорошо.

Если сравнивать CF-карты с накопителями других типов, то окажется, что флэш-память - совсем на такая медленная, как это принято считать! По производительности самые быстрые образцы флэш-памяти (в качестве эталона возьмем карту Transcend Ultra Performance 25х CompactFlash 256 Мбайт) сравнимы с Iomega Zip 750 Мбайт, а по скорости последовательной записи даже обгоняют этот накопитель более чем в 1,5 раза! По скорости последовательной записи флэш-память обгоняет диски CD-RW в 2 раза, по скорости последовательного чтения - на 10%! Флэш-память выигрывает у МО-дисков по скорости последовательной записи - в 2 раза - и случайного чтения - на 10%, однако отстает по скорости последовательного чтения и случайной записи - на 20%. Флэш-память отстает по скорости последовательной записи от DVD-дисков (при «прожигании» в режиме 4х) - в 1,4 раза.

Отметим, что если CF-карта используется в цифровой фотокамере, то для нее в первую очередь важна скорость последовательной записи - чем она выше, тем быстрее фотокамера вернется в рабочее состояние после «захвата» кадра и «сброса» его на флэш-карту. Впрочем, скорость чтения CF-карты в этом случае тоже важна, правда, не так критична - чем быстрее считываются данные, тем быстрее будет работать фотокамера в режиме просмотра отснятого материала.

SmartMedia. Конструкция карт SmartMedia (SM) чрезвычайно проста. В карте SM нет встроенного контроллера интерфейса и по сути - это одна или две микросхемы флэш-памяти, «упакованные» в пластиковый кожух. Стандарт SM был разработан компаниями Toshiba и Samsung в 1995 г. Интерфейс карт SM - параллельный, 22-контактный, но из них для передачи данных используется только восемь линий.

MultiMedia Card. Карты Multi-Media Card (MMC) имеют 7-контактный последовательный интерфейс, который может работать на частоте до 20 МГц. Внутри пластикового корпуса карты размещается микросхема флэш-памяти и контроллер ММС-интерфейса. Стандарт ММС предложен в 1997 г. компаниями Hitachi, SanDisk и Siemens.

SecureDigital Card. SecureDigi-tal Card (SD) - самый молодой стандарт флэш-карт: он был разработан в 2000 г. компаниями Matsushita, SanDisk и Toshiba. Фактически SD - это дальнейшее развитие стандарта ММС, поэтому карты ММС можно устанавливать в накопители SD (обратное будет неверным). Интерфейс SD - 9-контактный, последовательно-параллельный (данные могут передаваться по одной, двум или четырем линиям одновременно), работает на частоте до 25 МГц. Карты SD оснащаются переключателем для защиты их содержимого от записи (стандартом также предусмотрена модификация без такого переключателя).

USB-флэш-память. USB-флэш-память (USB-память) - совершенно новый тип носителей на флэш-памяти, появившийся на рынке в 2001 г. По форме USB-память напоминает брелок продолговатой формы, состоящий из двух половинок - защитного колпачка и собственно накопителя с USB-разъемом (внутри него размещаются одна или две микросхемы флэш-памяти и USB-контроллер).

Работать с USB-памятью очень удобно - для этого не требуется никаких дополнительных устройств. Достаточно иметь под рукой ПК под управлением Windows с незанятым USB-портом, чтобы за пару минут «добраться» до содержимого этого накопителя. В худшем случае вам придется установить драйверы USB-памяти, в лучшем - новое USB-уст-ройство и логический диск появятся в системе автоматически. Возможно, что в будущем USB-память станет основным типом устройств для хранения и переноса небольших объемов данных.

Что же касается USB-флэш-памяти, то это, несомненно, более удобное решение для переноса данных, чем флэш-карты, - не требуется дополнительный флэш-накопитель. Однако производительность протестированных накопителей этого типа - Transcend JetFlash 256 Мбайт и Transcend JetFlashA 256 Мбайт - ограничивалась низкой пропускной способностью интерфейса USB 1.1. поэтому их показатели в тестах на скорость работы были довольно скромными. Если USB-флэш-память оснастить быстрым интерфейсом USB 2.0, то по «скорострельности» эти накопители, конечно, не уступят лучшим флэш-картам.

Интересно отметить, что по скорости последовательной записи флэш-память превосходит Iomega Zip 750, диски CD-RW и МО-носители и уступает только DVD-дискам. Это лишний раз подчеркивает, что разработчики флэш-памяти в первую очередь стремились увеличить скорость последовательной записи, поскольку флэш-память изначально предназначена для использования в цифровых фотокамерах, где прежде всего важен этот показатель.

В итоге можно заключить, что флэш-память - бесспорный лидер по надежности, мобильности и энергопотреблению среди накопителей небольшой и средней емкости, обладающий к тому же неплохим быстродействием и достаточным объемом (на сегодня на рынке уже доступны флэш-карты емкостью до 2 Гбайт). Несомненно, это очень перспективный тип, однако их широкое использование пока сдерживается высокими ценами.

23 вопрос (Программное обеспечение ПЗУ IBM PC. Программы POST, Boot Loader)

загрузочные устройства (IBM PC)

Загрузочное устройство это устройство, с которого загружается операционная система. Современные BIOS компьютер поддерживает загрузку с различных устройств, как правило, местные жесткий диск (или одной из нескольких разделах на таком диске), оптических дисков, устройств USB (флэш-диск, жесткий диск, оптический привод диска и т.д.), или карта сетевого интерфейса (с использованием PXE). Раньше, менее распространенными загрузочными устройствами включать дисководы гибких дисков, SCSI устройствах, Zip дисков, и LS-120 дисков.

Как правило, BIOS позволяет пользователю настроить порядок загрузки. Если порядок загрузки установлен в положение "Во-первых, привод DVD-вторых, жесткий диск", то BIOS будет пытаться загрузить с диска DVD, и если это не удается (например, из-за отсутствия DVD в привод), она будет пытаться загрузиться с локального жесткого диска.

Например, на компьютере с Windows XP, установленной на жесткий диск, пользователь может установить порядок загрузки к приведенному выше, а затем вставить GNU / Linux Live CD, с тем чтобы попробовать Linux без необходимости устанавливать операционную систему на жесткий диск. Это является примером двойной загрузкой - пользователю выбор, какую операционную систему для запуска после того, как компьютер выполняет свою самотестирования. В этом примере двойной загрузкой, пользователь выбирает, вставляя или вынимая компакт-диск из компьютера, но он является более общим, чтобы выбрать, какую операционную систему для загрузки, выбрав из меню с помощью клавиатуры компьютера. (Обычно F11 или ESC

После запуска, персональный компьютер "S x86 процессор выполняет инструкцию находится в памяти CS: IP FFFF: 0000 в BIOS, который находится на 0xFFFF0 адрес. Эта память места близок к концу 1 Мбайт системной памяти доступна в реальном режиме. Обычно он содержит инструкцию, которая Перейти выполнение переводов на место BIOS запуске программы. Эта программа запускается при включении питания самотестирования (POST) для проверки и инициализации необходимых устройств. BIOS проходит через предварительно настроен список Non-Volatile устройств хранения информации ("Boot Device последовательность"), пока не обнаружит, что является загрузочным. Загрузочные устройства определяется как вывод, который можно читать, а последние два байта первого сектора содержать слова 0xAA55 (также известный как загрузочный подпись).

После того как нашла BIOS загрузочного устройства он загружает загрузочный сектор в шестнадцатеричный сегмента: офсетная адресу 0000:7 C00 или 07c0: 0000 (карты с тем же адресом Ultimate) и передает на исполнение загрузочного кода. В случае с жестким диском, это называется основной загрузочной записи (MBR) и часто не конкретной операционной системы. Код MBR обычной проверки таблицы разделов МБР для раздела, установить в качестве загрузочного (один с флагом активности) Если найден активный раздел, MBR код загружает кода загрузочного сектора от этого раздела и выполняет его. Загрузочный сектор часто операционная система конкретного, однако в большинстве операционных систем, его основная функция заключается в загрузке и исполнять операционную систему ядра, которое продолжается при запуске. Если нет активных разделов, или загрузочный сектор активного раздела является недействительным, MBR может загрузить вторичный загрузчик который будет выбрать раздел (нередко с помощью пользовательского ввода) и загружает загрузочный сектор, который обычно загружает соответствующие ядра операционной системы.

В некоторых системах (в частности, новых Макинтошей) использовать Intel "S собственного EFI. Также Coreboot позволяет компьютеру загрузиться без сверхсложных прошивка / BIOS Постоянно работает в режиме управления системой. Наследие 16-битный интерфейс BIOS требуются определенные x86 операционных систем, таких как Windows XP, Vista, и 7. Однако большинство загрузчиков имеют 16-битную поддержку для этих унаследованных системах BIOS.

В старых компьютерах Windows, особенно те, кто управлял Windows 9x, если чипов BIOS присутствует, то он может или не может показать экран подробные BIOS производитель чипов, авторские права состоялась производитель чипа и идентификатор чипа при запуске. В то же время, она также показывает объем доступной памяти компьютера и других частей кода Отображение информации о компьютере.

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Постоянные запоминающие устройства (ПЗУ) предназначены для постоянного, энергонезависимого хранения информации.

По способу записи ПЗУ классифицируют следующим образом:

  1. однократно программируемые маской на предприятии-изготовителе;
  2. однократно программируемые пользователем с помощью специальных устройств, называемых программаторами - ППЗУ ;
  3. перепрограммируемые, или репрограммируемые ПЗУ - РПЗУ .

Масочные ПЗУ

Программирование масочных ПЗУ происходит в процессе изготовления БИС. Обычно на кристалле полупроводника вначале создаются все запоминающие элементы (ЗЭ) , а затем на заключительных технологических операциях с помощью фотошаблона слоя коммутации реализуются связи между линиями адреса, данных и собственно запоминающим элементом. Этот шаблон (маска) выполняется в соответствии с пожеланиями заказчика по картам заказа. Перечень возможных вариантов карт заказов приводится в технических условиях на ИМС ПЗУ . Такие ПЗУ изготавливаются на основе матриц диодов, биполярных или МОП-транзисторов.

Масочные ПЗУ на основе диодной матрицы

Схема такого ПЗУ представлена на рис. 12.1 . Здесь горизонтальные линии – адресные, а вертикальные – это линии данных, с них в данном случае снимаются 8-разрядные двоичные числа. В данной схеме ЗЭ – это условное пересечение линии адреса и линии данных. Выбор всей строки ЗЭ производится при подаче логического нуля на линию адреса ЛА i c соответствующего выхода дешифратора. В выбранный ЗЭ записывается логический 0 при наличии диода на пересечении линии D i и ЛА i , т.к. в этом случае замыкается цепь: + 5 В, диод, земля на адресной линии. Так, в данном ПЗУ при подаче адреса 11 2 активный нулевой сигнал появляется на адресной линии ЛА 3 , на ней будет уровень логического 0, на шине данных D 7 D 0 появится информация 01100011 2 .

Масочные ПЗУ на основе матрицы МОП-транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.2 . Запись информации осуществляется подключением или неподключением МОП-транзистора в соответствующих точках БИС. При выборе определенного адреса на соответствующей адресной линии ЛА i появляется активный сигнал логической 1, т.е. потенциал, близкий к потенциалу источника питания + 5 В. Данная логическая 1 подается на затворы всех транзисторов строки и открывает их. Если сток транзистора металлизирован, на соответствующей линии данных D i появляется потенциал порядка 0,2 0,3 В, т.е. уровень логического 0. Если же сток транзистора не металлизирован, указанная цепь не реализована, на сопротивлении R i не будет падения напряжения, т.е. в точке D i будет потенциал +5 В, т.е. уровень логической 1. Например, если в показанном на рис. 12.2 ПЗУ на адрес подать код 01 2 , на линии адреса ЛА 1 будет активный уровень 1, а на шине данных D 3 D 0 будет код 0010 2 .

Масочные ПЗУ на основе матрицы биполярных транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.3 . Запись информации осуществляется также металлизацией или неметаллизацей участка между базой и адресной линией. Для выбора строки ЗЭ на линию адреса ЛА i подается логическая 1. При металлизации она подается на базу транзистора, он открывается вследствие разницы потенциалов между эмиттером (земля) и базой (примерно + 5 В). При этом замыкается цепь: + 5 В; сопротивление R i ; открытый транзистор, земля на эмиттере транзистора. В точке D i при этом будет потенциал, соответствующий падению напряжения на открытом транзисторе – порядка 0,4 В, т.е. логический 0. Таким образом, в ЗЭ записан ноль. Если участок между линией адреса и базой транзистора не металлизован, указанная электрическая цепь не реализована, падения напряжения на сопротивлении R i нет, поэтому на соответствующей линии данных D i будет потенциал +5 В, т.е. логическая 1. При подаче, например, адреса 00 2 в приведенном на рис. 12.3 ПЗУ на ШД появится код 10 2 .

Примеры масочных ПЗУ приведены на рис. 12.4 , а в табл. 12.1 – их параметры .

Таблица 12.1. Параметры масочных ПЗУ
Обозначение БИС Технология изготовления Информационная емкость, бит Время выборки, нс
505РЕ3 pМОП 512x8 1500
К555РE4 ТТЛШ 2Кx8 800
К568РЕ1 nМОП 2Кx8 120
К596РЕ1 ТТЛ 8Кx8 350

Программируемые ПЗУ

Программируемые ПЗУ (ППЗУ ) представляют собой такие же диодные или транзисторные матрицы, как и масочные ПЗУ, но с иным исполнением ЗЭ. Запоминающий элемент ППЗУ приведен на рис. 12.5 . Доступ к нему обеспечивается подачей логического 0 на линию адреса ЛА i . Запись в него производится в результате осаждения (расплавления) плавких вставок ПВ, включенных последовательно с диодами, эмиттерами биполярных транзисторов, стоками МОП-транзисторов. Плавкая вставка ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при программировании импульсами тока величиной 50 100 микроампер и длительностью порядка 2 миллисекунд. Если вставка сохранена, то в ЗЭ записан логический 0, поскольку реализована цепь между источником питания и землей на ЛА i через диод (в транзисторных матрицах – через открытый транзистор). Если вставка разрушена, то указанной цепинет и в ЗЭ записана логическая 1.